PREFACE.

During the last war, the Ordnance Board set up a Sub-Committee of the Armour Piercing Projectile Committee. It was known as the Armour Piercing Projectile Coordinating Sub-Committee, and its functions were to revier and co-ordinate the various investigations being carried out in connection with the attack of armour. Aiter the war, this Sub-Committee continued in being with a reduced scale of activity. In order that the results of war-time work might be made more conreniently arailable to those working in the same field in future, it appointed a Report Sub-Committee, charged with the duty of preparing, in book form, a digest of the knowledge which had been accumulated.

The composition of the Report Sub-Committee, which included the authors of all sections of this rolume, is shown belor, followed by some relerant information about each of the members.

Dr. R. Beeching (Chairman).
Mr. C. A. Adams (Secretary).
Dr. J. TV. Maccoll.
Dr. D. G. Soprith.
Dr. C. Srkes.
C. Srkes. Ph.D.. D.Sc., F.Inst.P.. F.R.S., nor Director of Research. Tho:. Firth and Jobn Bromn Ltd., Brown-Firth Research Laboratories, pho mrote the Foremord. was Chairman of the A.P.P. Co-ordinating Sub-Committee from its inception in 1941 to $19+6$. He held. at the same time. the posts of Superintendent of the Metallurgr. Department at the National Phrsical Laboratory and Superintendent of Terminal Ballistics in the Armaments Research Department. In this dual capacitr, be ras intimately concerned with the development of solid steel shot. heary naral A.P. shell, cored projectiles and armour plate. He ras primarily responsible for the introduction and use of calibration shot for firing trials, and played an important part in introducing cored projectiles into service during the war.
R. Beeching, A.R.C.S., B.Sc., D.I.C., Ph.D., who prepared Chapters 1 and 5. was first concerned with A.P. shot while in the Research and Irevelopment Laboratorr of the Mond Nickel Co. In 19+3, he transferred to the Armaments Design Department. and was for some time, Superintendent of Shell Design. He ras associated rith the design of many armour piercing projectiles. with the derelopment of high relocity cored projectiles and with the production of heary A.P. shell at R.O.F. (Cardonald). He became Cbairman of the A.P.P. Co-ordinating Sub-Committee in 1946. 1
D. G. Soprith, D.Sc., Wh.Sc., A.M.I.Mech.E., not Superintendent of the Ergineering Division, National Physical Laboratory, who π rote Chapter 2. Was Secretary of the A.P.P. Co-ordinating Sub-Committee from its inception until 1946. He was responsible for the analrsis of an extensire series of firing trials, made under closelr controlled conditions in a special range at the N.P.L. and designed to elucidate scale effect and the effect of plate hardness. He also did much to rationalize the use of penetration formulie.
C. A. Adams, B.Sc., F.Inst.P., who prepared Chapters 3 and 4, was in the Terminal Ballistics Branch of the Armaments Research Department, and did a great deal of investigation br means of small scale trials, in connection with which he dereloped and emploved rarious high-speed photographic techniques. He contributed greatlr to anderstanding of the penetration of complex targets. and cap stripping. In 1946. he became Secretary of the A.P.P. Co-ordinating Sub-Committee.

Dr. J. W. Maccoll, Superintendent of Theoretical Armaments Research in the Armaments Research Department, was not directlr responsible for preparing any one section of this rolume, but gave helpful adrice and criticism throughout. Mach of the theoretical work on the mechanism of penetration was carried out under his superrision. He was a member of the A.P.P. Co-ordinating Sub-Committee from its inception in 1941.

Ordnance Board Press.
March. 1950.

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGHIT IS RECOGNIZED THAT CERTAIN PORTIONS AREILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.

CONTENTS

FOREWORD

C. Sykes

Page

Semmary of activities of the A.P.P. Co-ordinating Sub-Commitee ... [xiv]
Problems tet to be solfed [IVi]

CHAPTER 1

THE MODES AND MECHANISM OF PLATE PENETRATION AND OF SHOT FAILURE

R. Beeching

1. Lntroitction 1
1.1. Itpical plate damage (Homogeneous armour) : normal attack... 1
2. THE MECEANISM OF PLATE PENETRATION AND FATUUE : NORMAL ATTACK 2
2.1. Piates of semi-infinite thickness 2
2.2. P'ates of normal thickness 3
2.21. The formation of a bulge on the back face 3
2.22. Plag formation 4
3. Failures peculiar to rolled plate 4

ㄹ.2. The formation of laminar cracks 4
E25. Star cracking after lamination 5
£26. Discing 6
3. Resistance to penetration and energi absorption : normal attack ... 7
3.1. Energy for perforation 8
4. ANGLE ATtACK 9
4.1. The effect on hole and plug form 9
4.2. Eeaction on the shot 10
4.3. The effect of shot head shape 11
5. Falltas of biot... 12
5.1. The occarrence of shatter failure 13
5.2. The mechanism of shatter failure 13
6. Fage mardenkd plate 14
7. CAP ALTION 14
3. Fallizes of armour piercing shell 15
8.1. Head failares of shell 15
8.2. Base damage to shell 16
[iii]

CHAPTER 2

PENETRATION FORMCLet

D. G. Sopwith

CHAPTER 3

THE STRESSES IN PROJECTILES WHEN PENETRATING STEEL
C. A. Adams.

1. ITIBODECTION 31
2. Defpendence of projectile stresses on head resistance 31
2.1. Estimate of head resistance from plate hardness... 31
2.2. Estimste of head resistance from penetration formulæ 32
3. measurements of plate resistance in static punching experiments ... 33
3.1. General results established by static punching experiments 33
3.2. Detailed results of static punching experiments 34
4. Dependence of etatic resistance on plate hardness and thickneas ... 35
5. Dinamic measurements of plate resistance 30
[iv]
Page
6. Theoretical fork on the resistance to penetration 41
6.1. Pressure required to expand a hole in an infinite medium 41
6.2. Analysis involving the Theory of Elasticity 42
i. Modifications to the forces activg on the projectile due to dynamic EFFECTS 42
7.1. Einetic energy of the target \ldots... 42
7.2. Cavitation 44
ミ. Compressive strength required ln armoli piebeing projectiles 45
8.1. Sirength required to withstand the retardation on impact 45
8.2. Factors other than retardation affecting strength and hardness requirements 47
8.11. Elastic propagation of stress in the projectiles 47
8.22. Dynamic component of resistance 47
8.23. Dependence of yield stress on rate of strain 47
8.24. Three dimensional distribution of stress in the projectile 49
7. Stresses geverated in the oblique attack of armour 50
9.1. Yotion of the projectile through the plate 50
9.2. Bending moment and shearing stress in a rigid rod 50
9.3. Calitative distribution of stress in a projectile attacking a plate obliquely, and its relation to projectile design 51
9.4. Theoretical and empirical investigations of oblique attack 51

CHAPTER 4

COMPLEX TARGETS

C. A. Adams.

i. Inthosiction 53
2. General considerations affecting the tise of spaced armour 53
3. Yaw catsed by preijumary targets and its effects on penetration ... 54
3.1. Eaw development and jaw prevention in relation to aircraft targets... ... 55
3.2. Faw development and its effect on critical velocity in naval targets 55
4. SPACED ARYOUB AND CAP-STRIPPING 56
4.1. Ereakage of armour-piercing projectiles by thin plates 56
4.2. Bemoval or breakage of armour-piercing caps 57
5. APPLICATION OF SPACED ARMOUR TO LAND VEHCLIES 57

CHAPTER 5
CORED PROJECTILES
R. Beeching.

1. INTROTLCTION 60
2. The felictiles of cored shot design 60
3. Tingeter carbide as a core material 61
4. TYPES OF CORED PBOJECTHES 62
4.1. Composite rigid projectiles 62
4.n. Squeeze-bore projectiles 62
5. Sabot projectiles 62
4.4. Comparison of performance of A.P.C.B.C. and cored projectiles 62
6. Spectal charlacteristics of plate penetbation by cored projectiles ... 63
5.1. Cavitation 64
7. PENETRATION FORMULE POR CORED PROJECTILES 64

APPENDIX 1

REFERENOES

Ajbreviations used in List of Papers received by A.P.P. Co-ordinating Sub-Committee List of Papers received and summarized by A.P.P. Co-ordinating Sub-Committee Stpplementary refersnces 65

FIGURES.

Fig. 1. Photograph of front petals.
Fig. 2. Photograph of sheared off front petals.
Elg. 3. Back view of a plug hole.
Fig. 4.' $\}$ Typical discs.
Fig. 6. A flake from cast armour.
Fig. 7. Diagram showing front petal formation.
Fig. 8. Diagram illustrating shear stresses causing plugging.
Fig. 9. Displacement of plate material to form a back bulge.
Fig. 10. Diagram showing back petal formation.
Fig. 11. Photograph of section of plate showing lamination and disc formation.
Fig. 12. Photograph of section of plate showing lamination and back petalling.
Fig. 13. Mode of formation of laminar cracks.
Fig. 14. Itternative way of viewing laminar crack formation.
Fig. 15. Diagramatic section of a disc.
Erg. 16. Changes in direction of the tensile stress causing the separation of a disc.
Fig. 17. Plag produced by attack at 30°.
EIG. 18. Mode of plug formation in angle attack.
Fig. 19. Two stages in perforation at angles of 45° to 55°.
Fig. 20. Turning of shot during perforation in angle attack.
Fig. 21. Forces acting on the shot during penetration at angles around 30°.
Fig. 22. Diagram of stages in ricochet.
Fig. 23. Effect of head form on ricochet.
Fig. 24. Kultiple spark photographs of ricochet.
Fig. 25. Diagramatic section of a shatter dent.
Fig. 26. A performance chart showing regions of shatter.
Fig. 27. The mechanism of shatter.
Fig. 28. Fariation of optimum plate hardness.
Fig. 29. Fariation of critical velocity with plate hardness.
Fig. 30. Mean pressure during penetration as estimated from N.P.L. formula.
Fig. 31. Tariation of $\frac{\text { Maximum }}{\text { Brinell hardness }}$ pressure with t / d, for 4 c.r.h. punches.
Elg. 32. Variation of Maximum pressure $\frac{\text { Brinell hardness }}{\text { Bith } t / d, \text { for } 1.4 \text { c.r.h. punches. }}$
FIG. 33. Fariation of Maximum pressare with t / d, for $1 \cdot 4$ c.r.h. punches. (Brinell nombers specified for each observation).
Fig. 34. Mean results for the variation of $\frac{\text { Maximum pressure }}{\text { Brinell hardness }}$ with t / d, and comparison with mean pressures estimated from N.P.L. formula.
Fig. 35. Diagram of apparatus used for base-retardation measurements.
Fig. 36. Dependence of minimum tip hardness of projectile on hardness of target.
Fig. 37. Diagram illustrating the assumption made in the analysis of the stoppage of a moving cylinder by a rigid target.
Fig. 38. Kultiple spark photographs showing the tarning of a 2 -pr. projectile daring perforation of a thin plate.
Fig. 39. Reactions in a rigid rod subjected to a force at one end.
Fig. 40. Variation of bending moment and shearing stress along a rod free at one end.
Fig. 41. Increase in projected ares due to yaw.
Fig. 42. Influence of yaw on the change in presentation caused by impact forces.
Fig. 43. Kultiple spark photographs showing yaw development as a result of penetration of aircraft skin.

Fig. 44. Yultiple spark photographs of the penetration of aircraft skin by a bullet to a design which prevents yaw development.
Fig. 45. Yultiple spark photographs showing the resultant transverse rotation of a projectile aftei passage through an oblique plate.
Fig. 46. Multiple spark photographs on model scale of a shell toppling against an armoured deck after traversing three preliminary decks.
Fig. 47. Arditron flash photographs of the effects of thin plates on 2-pr. capped projectiles : (a) ballistic cap deformed; (b) piercing cap detached but unbroken; (c) piercing cap disintegrated.
Fig. 48. Arditron flash photograph of 6-pr.: displacement of cap.
Fig. 49. Arditron flash photograph of 6-pr.: two simultaneous views from different aspects showing breakage of piercing cap.
Fig. 50. Effects of deviation caused by first plate on the angle of attack of the second plate in oblique impacts on spaced armour.
Fig. 51. The form of hole produced by cored shot : (a) when no cavitation occurs, (b) with caritation.

TABLES.

Table 1. Constants for use in N.P.L. Penetration Formula.
Table 2. Falues of functions in modified de Marre Formula.

Table 3. Static observations on pressures during penetration, with comparisons of calculated and observed critical velocities.

Table 4. Values of p / B at $t / d=1$, estimated by correcting values observed in the neighboarhood of $t / d=1$.

Table 5.) Measurements of plate resistance from retardation observations.
Table 6.;

- Table 7. Dynamic compressive yield stress, as measured in the Taylor test, compared with static yield.

Table 8. Comparison of thicknesses of plate perforated by full-calibre and sub-calibre projectiles.

SYMBOLS.

The sreiols in general use and, in some cases, the units commonly adopted, are given below. Wbere variation from these symbols is made the text provides the necessary definitions. In cases where there is often variation of the units according to the application no specification 3 given here. The part of the text concerned.will in these cases define the anits. In particular a note is given when ' g ' enters a relation for conversion to some given set of practical unre.

Peorectiliz

$d=$ diameter in inches.
$\boldsymbol{M}=$ mass in ibs.
$W=$ weight Z lbs. wt.
With these definitions W and M are numerically equal. Both are given becsuse their dimensions differ, and each symbol is frequently used.
$A=$ projectei area.
$\rho=$ density.
$l=$ length of bead.
Plate.
$t=$ thickness in inches.
$\rho^{1}=$ densit..
$w^{\dot{\prime}}=\frac{\pi}{4} d^{2} t 0^{-}=$weight of displaced plate material.
$f=$ stress asiociated with resistance offered to penetration.
$f_{7}=$ yield suess in compression.
$f_{\mathrm{s}}=$ altimate tensile stress.
$q=$ effective shear strength during penetration.
$S_{0}=$ yield stress in shear.
$\Sigma_{p}=$ fracrure stress in shear.
$E_{e}=$ critica energy for perforation.
Conditiose of attack.
$\tau_{0}=$ strikices relocity in f.s.
$r_{1}=$ residus velocity in f.s.
$r=$ criticai relocity in f.s.
$y=$ instanibneous relocity.
$\dot{\dot{E}}=$ angle o° attack = angle between initial direction of motion of projectile and normal to plate.
$t=$ slope ω_{i} ine relating $\tau_{0}{ }^{2}$ and $v_{1}{ }^{2}$, i.e. $v_{0}{ }^{2}=v^{2}+8 v_{1}{ }^{2}$.
Forces.
$F=$ maxiram force opposing penetration.
$\overline{\bar{F}}=$ mean jrce opposing penetration.
Stresses.
$\rho=$ pressure resisting penetration.
$p_{0}=$ value of p assumed in " constant pressure " theories.
$P=$ maximam value of p.
$\frac{\because \rho^{1} u^{2}}{2 g}=$ omponent of pressure assumed due to dynamic effects.
\because may be regarded as the "drag coefficient" during penetration, giving $p=p_{0}+\frac{\gamma \rho^{2} u^{2}}{2 g}$.

Elastic onstants.
$E=$ Yourfis modulus.
$\sigma=$ Poisbos s ratio.
Preceding page blank

FOREWORD

By Lr. C. Sykes, F.R.S.

Armor and Aryour-Pieldcing l'rojbctiles l'riul to World War II.

Prior to the secoud World War, experience in the use of armour-pierciug projectiles was almost extasively contined to Naval wartare and bwowledge of armour and armourpiercing proje:ciles dereloped against this background. There nas, inevitably, competicive develogment of armour and shot and supremacy passed back and forth between defence and atiack. To understand this competitiou fully it is necessary to realize that not only did sizes of guns and projectiles increase to beep pace with increases in thickness of arnour, bat also there was a continuous struggle to improve the quality of armour, to get the greatest protection from a given weight, and to improve the quality of projectiles to give the greatest armour penetration with guns of limited size.

Viaral armorr started to come into general use around 1860 , when the adoption of spherical, cast-ron, shell rendered rooden ships rery vulnerable. To counter this type of projectile, saips were titted with a belt of wrought iron plates, which broke up the spherical shei. As a consequence, spin-stubilized, ogival headed, cylindrical shell or shot of chilled cast-iron were developed.

Following tis, ships were armoured nith compound armour of wrought iron plates faced with stei, then with homogeneous steel plates, and a corresponding derelopment was ithe use of dardened steel shell.

To defeat tie hardened, forged steel shell, armour plate was carburized and chilled on tie outer iace, and this led to the litting of shell with piercing caps. Such calls Fere. in the Est place, made of mild steel and were of various forms. Against early forms of fact-zardented armour, and at angles of athack near wormal, they prerented breaic-up of the shell head by the hard face of the plate.

Frather im :orements in quality of face-hardened armour resulting from the use of hirh alloy sté plates. together with an increase in the importance of angles of attack other than nowal assectated with changes in Saval tactics, led to the adoption of rarious forme of hardented steel penetrating cap and also to a reduction in the length of the shell beed. Thus, between the wars, the shell in use by the major Navies of the porid had all develuled to a rather similar form, the shell bodies being about 3 to $3 \frac{1}{2}$ calicres long, Tith an ogival head of about $1 \cdot 4$ c.r.h. and made from heat-treated, fairly high carbon, Igh alloy stexi. In general, these shell were fitted with a steel piercing cap, haring aiovut a tenth of the weight of the shell body, and were also fitted with a long ballistic ap , to improre the external form of the shell from the point of view of iair resistance.

The shell brdies were very hard at the point and their hardness was graded donn from the poir: to the base, the precise hardness layout varying quite considerably between differ=nt countries and different makers in any one country. This grading of the cody harcuess was held to be necessary to prevent break-ap of the shell during perioration of plate at angles of 30 degrees or so, and pas also an aid to manufacture, as it permittec machiwing of the base end of the shell after heat-treatment.

Beifeen the 1914-18 and 1939-45 wars, increasing importance was attached to the futnre rolle of the tank and all leading nations dereloped anti-tank, armour piercing projectiles to $\dot{\text { Lep }}$ pace with the development of more hearily armoured fighting vehicles. Eren so, how-eer, the thicknessen of armour involved were relatively small and such armonr could te severelf overnatched br reasonably small weapons. Therefore, while is there was appieciation of the adrantages of producing good quality shot to give high efficiency weaviss in terms of the ratio of their penetrative performance to their reight, the natural tiadency was to develop guns and projectiles which easily outmatched exiscing armos. For this reason the quality of anti-tank A.P. projectiles was not so * severely tested as it was to be later.

The war led to a rapid progressive increase in armour thickness on tanks, with the resai: that eali generation of gun and projectile passed through a phase where it was presented witi an increasingly difficult task. Uinder these conditions it was of vital
imporance to achieve the highest possible penetrative performance from in given weapon, which necessitated improvements in shot quality and design. Up to that time the derelconents in both Naral and Land service armour and armour-piercing projectiles had ritinly followed naturally from developments in steel making and trearment and had depended upon only superticial understanding of the mechanisn of armour fenetration. However. as the problems of the $1939-45$ war developed in rapid succession, a better inderstanding of the process of armour penetration became increasingly necessary. As a consequence, in 1941, a small Committee - the Armour Piercing I'rojectile Co-ordinating Sub-Committee-was set up by the Ordnance Board, with the folloring terms of reference
"To review and co-ordiuate the investigations being carried out by groups of scientists in connection with the attack of armour: to make recommendations soncerning their scope and progress; and to report to the Board."

Slymeary of Activities of the A.P.P. Cu-uhdinating Scb-Commitree.

At ine time when the Sub-Committee ras formed, a considerable amount of investigational work had been put in hand, both in the various research laboratories aksociated with the Services and in industrial laboratories. This work was reviened and the meetings of the Sub-Committee were used as a medium whereby the various investigators could familiarize themselves with the work going on elsewhere.

Altough the Sub-committer was primarily concerned with the attack of arwour, i.c., the frrformance of the projectile, it found inmediately that to urike any reliable inrestgation relating to the behariour of shell required a detailed knorledge of the beharisur of the plate. Consequently. research on both plates and projectiles rias co-orcinated by the Sub-committee practically from its inception.

In :341 a good deal of empirical knowledge was available on armour and shell. As regaria penetration of armour, the De Marre formula, or one of its variants, was used, and Milne very quickly collected together the mass of firing trial data available at the Ordnance Board and reduced it by statistical methods into what is now known as the Milne iormuls (see Chapter 2). The bulk of Milne's data referred to attack at an angle of 30 iegrees.

Similarly, Stockdale, at the Department of Tank Deaign, reviewed the data accomulated on tank armour plates, generally for " normal attack." and produced a suitable empircal formala to handle the data. This formula is different in form from Milne‘s, but is similar in accuracy.

Wr.ie both these formnle served their purpose in allowing the behariour of shot. shell and armour to be predicted with reasonable accuracy, they had certain demerits. The enpirical constants could not readily be interpreted in terms of any known physical propery of the plate, although it was known that within certain ranges of hardness the cinstants increased with hardness. As regards the shell, the formule merely recopsized its weight and diameter and did not differentiate between an annealed shell and s hardened shell. Finally, the formula took no account of any scale effect and there ras no reliable information as to whether such an effect did, in fact, exist.

The resistance of armour varies from plate to plate and from one position on any particilar plate to another. Shell vary in quality. The firing test itself is generally a tem to destruction, either of plate or shell, and it is well known that acatter in tests of this type is high. Thus, it is not surprising that both the Milne and Stockdale formiax, applied intelligently, enabled the behaviour of armour plate to be predicted withis the limits with which the plate could be produced in bulk.
Hovever, from the point of view of further developments, a much better understanding was required, and it is the purpose of this book to record the progress made in this direction. The major items of development proceeded as follows:-

Shot.
It :- generally agreed that the production of shot and shell of a consistent quality is a mosin simpler proposition than the production of armour. Cleaner steel can be used and we problems of segregation are much easier. At an early stage, then, the manufacture of the so-called calibration shot was instituted. These shot were made under supervision and rare subsequently segregated into batches of known uniformity of hardness gradient. by a: electrical method. Such shot mere reliable projectiles for proof of armour and consi-erably reduced the variability in the firing-trial test.

During : $: 3$ passage through the plate the shot has to impose and withstand the rery jigh stresis necessary to deform the plate material. In the case of normal attack, The strese in the projectile are primarily compresive, although tensile stress wares cecur by serlection from the rear end. At angles other than normal the stress disiribution I the projectile is more complex, due to the unsymmetrical pressure on the head, and tensile stresses are likely to be produced by the applied bending moment. Therefore : he projectile should be of such a shape and of such a material that it has adequate sirength to withstand these stresses without appreciable deformation or fracture. Hardness ayouts which ensured this were deternined empirically, but better understanding of the stresses set up in a projectile during plate perforation became increasingly zecessary is more severe performance requirements arose.

Stresses calculated from the penetration formulie are at best "average," and do zot give tie maximum stress. Two methods pere explored to provide such information; the photogeaphic method-by means of which the retardation of the shot can be obtaived from high speed films covering the actual penetration, and the static penetration method -in whici the force necessary to perforate the plate under static conditions is determined zsing a s.andard projectile and a press. This latter method was applied up to $2-\mathrm{pr}$. scale. Tze results obtained were used to develop a reliable means of determining minimum dardness gradients for shot and shell. They were particularly useful in providing 1 quantitative method for dealing with the effects of carity shape and size on the perforiance of shell.

At an eirly stage in the war the phenomenon of "shatter" was encountered. The :erm is a: plied when shot failure occurs at high velocities, with complete collapse of The shot. xhile, at lower velocities on the same plate normal penetration may occur without a-y shot break-up. This trouble led to the study of the inertia forces on the jead of ize shot arising from the high velocity induced in the plate material during the initial stizes of peuetration. The importance of such forces, especially with high velocity carbide si.t, is now realized.

Shatter tas eliminated as a practical problem on steel shot by the introduction of capped sìmc. Although much empirical work was carried out with various shapes and weights o: cap, understanding of the mechanism of cap action remains limited.

The aza saw the introduction of types of target which had receired little previous cousideration; high angle targets, space-plate targets, etc. Such targets accentuated probleme issociated with cup-stripping and yaw. Iluch information of a semi-quantitaiive type xas produced regarding such problems, by means of the high speed spark photogras: 19 equipment.

Ple: : penetration formulce.

As alrady indicated, rariability in normal supplies of armour and shot made it impossibis to determine mhich of the various empitical formula was likely to be the most relizile. Consequently a detailed firing programwe was worked out using specially manufac:ared armour plate and shot, in an endeavour to get maximum oniformity. Four sizs of projectile were used, approximately 0.3 inch, 0.5 inch, 1 inch and 1.56 -inch (2-pr.). $\approx=d$ firing trials mere carried out under laboratory conditions, using residual relocity zeasurements for determination of critical velocity.

Such trials have been carried out under conditions of normal attack and angle attack, and the $m p r o d u c i b i l i t y$ of the results is far bigher than that previously achiered in any firing trisis, and has justified the care and attention put into the work.
The remits gire definite eridence for a scale effect, and enable its magnitude to be assessed. In addition, the constants in the penetration formula finally chosen can be estimate: within certain limits, from the phrsical properties of the plate. Although the reproducility of the critical velocity in these trials is high, values falling within limits $o!\pm 10$ f.s., the various empirical formule still give equally good "fits" when the appr: Driate constants are chosen. For a given scale of attack, in terms of the ratio of shot !libre to plate thickness. plate resistance is found to pass through a maximum at a cerisin hardness lerel. This hardness varies with the (shot calibre/plate thickness) ratio.

Plate quality.
Armonr plate can fail in a variety of ways, when attacked by a giren projectile under standard conditions. It may plug, petal ur disc. The dincing failure is usually associaied with a low penetration velocitr, and is also objectionable for other reasons. There was very little authoritative information available as to how the physical properties of the armour plate affected the method of failure. This problem was studied empirically from the data prorided by metallurgical examination and physical testing of plates, and the conclusions correlated with the inrestiration on plate penetration already described.

It was demonstrated that discing depends bolh on the "quality" of the plate, i.e., freedom from inclusions and marked directional properties, as well as on the actual hardness.

Problems yet to be sulved.

Major problems in connection with the penetration of armour by armour-piercing projectiles yet remain to be solved. All of these are involred in a more thorongh understanding of the mechanism of penetration, and some of them are of direct practical importance in relation to the improvement of shot and armour performance.
It is necessary to find out much more about the way in ohich plate material behaves under the pecaliar condition of atressing and deforination which are indnced by the penetration of shot. The mechanical properties normally measured for steel are of very limited ralue in this connection, and a rery big step forward would be achiered br determination of the behaviour in shear of plate material under conditions where the principai stresses were all compressive. at high rates of struin. The effect of steel quality, i.e., cleanliness and directionality, on this behaviour is of particular importance.

Secondly, more knowledge is required of the strens distribution in projectiles when penetraing armour at angles other than normal. So far, nearly all attempts to measure or to calculate the stresses in a shot have been confined to the case of normal attack. For this case. relatirely simple theoretical treatments of the problem five useful results. but the importance of stress data for angle attack is greater, and far wore difficult to obtain.

A third outatanding problem, to which reference has already been made, is to determine how a fyercing cap serves to prevent shatter. Possible explanations wugrested for are:
(a). That the cap imparts enough energy to the plate, to reduce the efferts of the inertia of the plate material immediately in front of the shot. without transmitting great stress to the shot because of its on'n break-up.
(bi. That the cap gives radial support to the shot head.. br rirtue of its orn strength or inertia, during the early stages of penetration.
Howerer. trials with various shapes of cap calculated to eliminate the possibility of one or other of these effects have failed to substantiate either explanation. It is possible tiat both play some part, but this has not been proved.

THE MODES AND MECHANISM OF PLATE PENETRATION AND OF SHOT FAILORE.

By R. Beeching.

1. Introdcction.

When a zood armour-piercing shot or shell penetrates a plate, the penetration usually uccurs in one of a few yuite characteristic ways, the actual mode of failmre depending upon the nature of the plate. In the first part of this chapter the rarious common modes of penetration are described, and an explanation of the rar in which plate properties determine the nature of the penetration is offered. For this purpose the shot is considered to be perfert and to suffer no fracture or deformation, while, in the second part of the chapter, troical forms of shot failure are described, and esplained so far as is at present possible.

The quäty of armour plate must obriously be assessed primarily in terms of its ability to stop pisrcing projectiles, but an important secondiry requirement is that, when defeated, ; je plate shall not fail in such a way that fragments become detached and so add to the lethality of the attack. These two requirements are not independent, since both deperd upon the mode of deformation and fracture of the plate when penetrated, although i: does not follow that the trpe of plate giring the most desirable form of failure offers the greatest resistance to penetration. This inter-relationship between resistance to penetration and mode of failure is considered further when mechanism of penetration is discusest.

When erasidering the various trpes of plate failure it may prove helpful to bear in mind the obviors fact that complete perforation of a plate cannot occur by deformation alone. some forz of fractare must also occur, and the type of plate failure which takes place is rery largely determined by the nature and position of the first fracture.

The deformation or break-up of piercing shot or shell sets a limit to armour penetration performance. Set-up of a projectile ou impact increases the striking energy necessary for succen against a given plate, while, in the case of shell, it may also cause a prematare, low-rirder detonation. Break-up of a projectile, if it occurs before perforation is substantikily complete, also has the effect of raising the striking energy necessary to defeat any gire: plate. Farther, although break-up of shot on learing the plate may be adrantagenus and increase lethality, shell must remain unbroken until detonated if the explosire illing is to be effective. Therefore, a good criterion of quality for armour piercing projertiles is ability to resist deformation or fracture while penetrating thick plate, and it is mportant to develop the best possible understanding of the mechanism whereby these faiires occur.

It is noz considered that the ideas sugrested to account for the various modes of failure of plate :r shot offer a complete applanation of the observed phenomena. Indeed, it appears ijat, in view of the present lack of knowledge relating to the plastic flow of metals, especially at high rates of shear, a rigorous treatment of the problem is impossible. Nevertheless, i-complete as they are, these attempts to explain the mechanism of rarious types of plate and shot failure are thought to be of ralue as a basis for considering the influence of plate snd shot properties on performance, and may form a useful step tomards more complete treatment of the problem at some future date.

1.1. Typical plate damagc (homogeneous armour) : Normal attack.

For the sake of simplicity the whole of this section will be limited to consideration of the phenomea associated with normal attack. In a later section, the differences in behaviour resalting from variation of the angle of attack will be described.

When $\&$ shot is fired into a plate of about one calibre thickness or more, the front of the plate alrost inrariably has either the petalled appearance shown in Fig. 1, or that shomn in Fig. í: whether perforation is complete or not.

If the plate is thick enough to stop the shot, the impression in the plate, beyond the crater, is a mould of the shot form. On the other hand, if the shot perforates the plate, the last stages of hole formation may occur in a viriety of mins, giving one of four main types of back damage or, sometimes, a combination of two or more of these.
A plag of approximately shot diameter may shear out, giving a roughly cylindrical bole right through the plate and a slight lip on the batk face, such as that shown in Fig. 3. Alternatirely, penetration may proceed to the stage where the projectile breaks through the back of the plate and forms back petals. These are normally larger and fewer than the tront petals, and they may remain attached to the plate or lireak away as they are bent back by the shot.

A third type of back damage occurs with rolled plate and is caused by the breaking aray from the back of the plate of a discof metal up to several calibres in diameter and usually half a calibre or so in thickness. Typical discs are shown in Figs. 4 and 5.

A fourth trpe of back damage which may occur is the breaking away of irregular flates from the back of the plate. This most commonly occurs with cast plate, and Fig. 6 shows the type of thake which may be detached. This is a rather exceptional example, since in the case illustrated only one large, faiply symmetrical flake was formed and this rewained in one piece. It would have been more typical had it broken into sereral irregnlar shaped pieces.

2. The Mbchanisid of Ylate Pevetration and Failere. Normal Attack.

All the phenomena referred to in the previous section can be accounted for in terms of plate properties, in a general way, although no strict quantitative treatment has been found possible so far.

2.1. Plates of semi-infinite thickness.

Consider a slot fired at normal against the face of a semi-infinite mass of armour. As the bead of the shot forces its way into the plate, any element of the head surface in contert with the plate exerts a.compressive furce on the plate. This force is roughly norral to the head surface at any part, because, as metallurgical examination of damaged plates shows, a thin surface layer of plate either melts or is raised to such a high temperature that the coetticient of friction between plate aind shot is likely to be low. Thus the forces exerted on the plate by the shot may be resolved into a formard, axial component, and equally distributed radial components. As a result of the radial load, the tiate material shears orer a series of co-axial conical surfaces, cutting the plate face at approximately 45 degrees, as shown by the dotted lines in Fig. 7. The shear stress is greatest over the surface closest to the shot ogive. Plastic displacement occurs there first and then extends to surfaces further and further out as work hardening occurs, and as toe shot penetrates to a greater depth. Due to the form of the ogive, and as a result of the radial velocity imparted to the plate material displaced by it, a raised collar boilos up round the head, as shown at.AA in Fig. T. This tends to split up into petals unde: the influence of the resulting tensile stresses, as shown in Fig. 1. If, howerer, the Fiate has rather less ductilitr and is incapable of so much deformation in shear, shear fracture mill occur orer one of the conical surfaces, giring front damage of the type shown in Fig. 2.

Ae penetration proceeds, displacement of plate by the process described abore obriously becomes more difficult, since there is a rapid increase in the area orer which shear must occor. if displacement is to extend to the plate surface. Examination of impressions in thisk plates suggests that the process of front petal formation has virtually ceased by the tine the shot ogive is completely immersed in the plate.

Unser these conditions, when bulging of the plate has ceased, if further penetration is to cacur. the volume of material displaced by the shot oyive must be accommodated by elartic deformation. The material immediately around the shot $w i l l$ be deformed plastinally, and will be reduced in volume by an amount corresponding to the elastic part of the rrain. Therefore, a large zone of plate material surrounding the plastically deformed zone must also be subjected to elastic compression, to account for the full rolume of material displaced. Penetration under there conditions has been treated theorctically in refs. A. 20,243 and 289 . While it represents an important part of the process of penetration in the case of tungsten carbide cored shot, where the thicknesses of plates penetrated are large in relation to calibre. it will be seen that the conditions are rot normally encountered in the attack of plate by steel projectiles, due to the influtace of the back face overlapping that of the front face.

Fig. 1.
Trpical front petals and also the beginning of a conical shear fracture below the petals on the left.

Fig. 2.
The appearance of an entrance hole from which the petals have sheared. The polished appearance has been destroyed by rusting.

Fig. 3.
The appearance of the back of a plate from which a plug has been driven.

$$
2 \cdot A
$$

Fig. 4.

Fig. 5.
Figs. 4 \& 5.-Two trpical dises.

$$
q^{-\beta}
$$

$$
2-c
$$

FIG. 7
SHOWING THE MODE OF PLATE DEFORMATION ASSOCIATED WITH THE FORMATION OF FRONT PETALS.

2.2. Plates of normal thickness.

For reasons which will become apparent, steel projectiles are seldom employed against plate of more than two calibres thickness, while plates of much less than one calibre are三o outmatched that they present a problem of relatirely small interest. Therefore, plate : bicknesses around one to two calibres thickness are of most general interest.

Consider now what bappens if the semi-intinite plate is reduced to a thickness of the normal order. Then, by the tiwe the shot ogive is immersed in the plate, there will be shear stresses over roughly cylindrical surfaces co-axial with the prolongation of the shot, as indicated in Fig. $8 t$. These shear stresses will be a maximum over the inner surface, where they will have a value :-

$\frac{T}{\pi \pi^{d}}$ where T is the fornard thrust of the shot

d is the shot calibre
t is the thickness of plate forward of the shoulder of the shot,
and the stess may be assumed to fall off approximately inversely as distance from the shot axis.

All the while the plate is so thick that the shear stress $\frac{T}{\pi \overline{d t}}$ dues not canse plastic deformation, the-conditions will be similar to those in the semi-infinite plate. It is interesting, therefore, to determine approximately at what plate thickness this condition is no longer satisfied.

Consider the state when the shot ogive is just completely embedded in the plate, so that if t is the full plate thickness, then $\frac{T}{\pi d t}=\delta_{0}$ is the condition for plastic shear over the \because lindrical surface, where S_{0} is the yield point in shear of the plate.

If it is assamed that there is a normal pressure p all over the bead surface, then $T=\frac{\pi d^{2}}{4} p$.
In reference 243 it is sbown that the pressure p necersaly to calne increase in carity size in an infinite mass of plate is from four to six times the rield point in compression of the material which, in turn, is approximately trice S_{0}.

Hence. :f the lorer ralue is taken, the condition for the expansion form of penetration is $p=4 f_{7}=8 S_{0}$, while the condition for shear over the cylindrical surface is $T=\frac{\pi d^{2}}{4} p=$ $\pi d i S_{0}$

$$
\text { or } p=4 t / d S_{0}=8 S_{0} \text { when } \frac{t}{d}=2
$$

Therefore, the infuence of the rear face will become important as soon as t is less than about $2 d$.

Thus. Flates of normal thickness camot be treated as though of infinite thicherss at any stage of penetration. Once the shot bead is immersed in the plate, penetration will proced, :o some extent at least, by the formation of a bulge on the back face of the plate.

2.in. The formation of a lulge on the back face.

The forgoing picture is useful as a means of showing at what plate thickness the influence of the back face becomes of importance, but it is over simplitied by the assumption that there is a uniform pressure all over the shot head. It suggests that in plates of less than two calibres thickness, penetration besond the front petalling stage would occur by the forward displacement of plate material by shear over cylindrical surfaces onle. In practire, it appears that this process is accompanied by some siderars displacement of plate material by the shot ogive, and that penetration proceeds by a combination of forwarde and siderays displacement of material br the head of the shot. The wanner in which material is assumed to be displaced is illustrated roughly in Fig. 9. It is to le expected. however, that as plate thickness is reduced, or as penetration proceerls, the tendenc! towards forward rather than sidewars displacement of the plate material will increase.

As pezetration proceeds under these conditions the bulge on the back face becomes more prinounced and more sharply curved over the apex, while increasing shear strain develops over the cylindrical surface which is a prolongation of the shot body. Ender these corditions, fracture of the plate will nltimately occur in one of two ways, depending upon the plate properties. Either a star carck will derelop at the apex of the bulge, due to tie tensile stresses set up there, or a plug of roughly shot diameter will shear out.

[^0]The firs of these types of failure will be favoured by relatively good ductility under shear stress in the bolk of the plate, or poor ductility under tensile stresses orer the back face, while the second type of failure will be favoured by converse conditions".

Once a crack has formed at the apex of the bulge on the back face, this is likely to extend through to the head of the shot and so reduce the rigidity of the plate in front of the shot. Further penetration is then likely to proceed by the bending formards and outwards of petals, as illustrated in Fig. 10.

2.2n. Plug formation,

A matter of obvious importance in relation to plug formation is the question as to how far the plag will move formard before shear fracture occurs. In the past, this problem has been dealt with by making arbitrary assumptions about the distance which the plug moves through and the shear load necessary to cause the morement. A more reasonable treatmens than this is possible, even though simplification is necessary.

If the formation of a plug of a full plate thickness is considered, then the shear stresses parallel with the shot axis would be expected to fall off roughly inversely as distance from the axis, outside a radius $d / 2$, since the total forward thrust to be supported remains constant and the area of any cylindrical surface of equal shear stress is directly froportional to its radius. For the present purpose, it is assumed that there is no shear stress inside the surface of radius $d / 2$, although this is not likely to be strictly true for normal head shapes.

Unless the shear deformation extends through a shell of finite thickness, fracture would be expected after infinitesimal plag movement, even though the material had high ductility in shear. Therefore, plastic shear cannot be limited to the surface orer which shear stress is a maximom, and the question as to how far the plug moves becomes one of decidize how widely plastic deformation extends.
If the wiate material work hardens so that the fracture stress in shear divided by the Field stress in shear is λ, then the yield point will just be reached at a radrus $\frac{d}{2} \lambda$, when sheer failure occurs at a radius $\frac{d}{2}$. Therefore, it is to be expected that a cylindrieal zone of internal radins $\frac{d}{2}$ and external radius $\lambda \frac{d}{2}$ will be plastically deformed, the degree of deformation varying from a maximum at a radius $\frac{d}{2}$ to zero at $\lambda \frac{d}{2}$. Hence, ite forward morement preceding shearing ont of the plug will depend upon the work harcening of the plate material.

2.2. Failures peculiar to rolled plate.

So far. the plate has been regarded as isotropic, but rolled plates seldom are, on account f their tendency to have planes of weakness parallel with the surface. If such planes of reakness are sufficiently pronounced, laminar cracks may form in the plate during fonetration and lead to discing failures of the type already described, or to a modified sorm of back petalling failure. The association of such cracks with discing failure a=d with the modified type of back petalling failure is illustrated by Figs. 11 and 12 ruspectively.
2.24. The formation of laminar cracks.

It is e-ident that the presence of laminar meaknesses in a plate cannot present the processet of failure already described by increasing the resistance of the plate to failure in these rays. Since they do affect the mode of failure, howerer, they must do so by causir? the intervention of some other form of breakdown which alters the mode of deformaten and affects the stresses which develop. Moreorer, it is not uncommon for the same plate to fail by plugging in some parts and by discing or star cracking following iamination in other parts, and since when a plug is driven out it normally bas a length of from half to two-thirds the plate thickness, it is evident that the event preventiz? plugging most occur at an early stage in shot pentration.

[^1]
ASSOCIATED WITH PLUG FORMATION.

THE LENGTHS OF THE PAIRS OF ARROWS INDICATE the Intensity of the shear stresses.

4. A

FiG. 9
SHOWING THE PLATE DEFORMATION ASSOCIATED WITH THE FORMATION OF A BACK BULGE.

$4-B$

FIG. 10
SHOWING HOW THE METAL REMAINING IN FRONT OF THE SHOT WILL TEND TO BEND WHEN ONCE A STAR CRACK HAS FORMED.

$$
4-6
$$

Fig. 11. ($\times \frac{3}{8}$).
\pm section through a plate from which a disc was about to become detached.

Fic. 12. ($\times \frac{1}{2}$).
A section through a plate which has failed by back petalling after laminating.

$$
4-0
$$

This event :s the formation of one or more laminar cracks in the layers of plate in front of :he shot. with a consequent reduction in its rigidity. When the plate is laminated in this way it :ends to beliave as a pile of discs, clamped round their outer edge, and therefore has a lower rigidity than a single diaphragm of the same total thickness. As a result, the dayers of material in front of the shot tend to retreat before it more easily by bending. and so the tendency to plug formation is reduced.

The manner in mbich the laminar cracks form is not fully established, though the fact that they do form in parts of the plate not get penetrated has been shown by sectioning fiertially penetrated plates. One view is that they are formed by the tensile stress ware which returus from the back face after the initial compression rave bas reached it. This explanation could in any case apply only at a time at which the displacemen: due to the reflected mave exceeds that due to the coutinuation of the pressure Hase, or in approximate terms. after the peak resistauce has been pasmed. The alternative riew that laininar cracks result from the deformations of the plate associated with the formation of the back bulge seems more satisfactory. This second mechanism may be riewed in tither of two ways, one of which is represented in Fig. $1 \$$ and the other in Fig. 14.

Shear will occur over the surface of the cylinder A B C D shonn in Fig. 13 and this cyinder may be regarded as being pushed through the surrounding material. If there are planes or weakness parallel with the plate sarface. the forward movement of the cylinder wiil tend to separate the plate into layers, in mach the same way as a rough, tightly fittir.g plug pashed through a hole in a pile of plates clamped round the edge would cause the back plates to bulge away from the others.

In the neighbourhood of the cylinder A B OD, where the shear stresses are high, th \in re will and it is ne quite clear to what extent these shear stresses contribute to the initial formation of laminar cracks. It does seem certain, howeser, that once a crack extends as a comple:e ring round the embryo plug. it extends outwards mainly as a result of the concencration of tensile stress over its outer edges. This extension continues unsil the crick perimeter is large enough to redace the tensile stress across it to a raine below the strength of the plate in a direction perpendicular to the plate faces. On the other hand, the extension of the cruck inmards, into the zone in front of the shot wtere there are compressive stresses through the plate, may occur at a later stage as a result of siear stresses produced by the stretching of one layer with respect to another as they are julged formard by the shot.

Fig. 14 rforesents an alternative way of viewing this process of crack formation. If a shot wers ired into a pile of plates clamped round the edges, the plates woold be erpected to juge in the manner illustrated, with consequent separation. A single plate would be eroected to behave in a similar manner if it had sufficiently pronounced laminar मeakness.

2.25. Star cracking after lamination.

Reference jas already been made to the way in which lamination might increase the tezdency to torm a rear bulge on a plate, while reducing the tendency towards plagging. As a resalt. ©he presence of laminar weakness in a plate may encourage a back petalling type failore.

The rariog layers of plate will tend to fail in the same was as a pile of thin plates. Tkey will be bulged in the direction of motion of the shot and the metal over the shot nose will be thinned by stretching radially and by compression betreen the nose of the sh or and the next layer. This process may continue for each successive layer, including the back ors. and give rise to a star cracking failure and finally to complete back peaalling. Fis stretching and thinning of successive layers is well shown in Figs. 11 and 12.

On the oriar hand, since the last layer is less adequately supported than the preceding lazers, it is zot remarbable that it mav fail in a different pay. Whether it does so or not depende apon its thickness, upon the extent of the laminar cracking, and opon the temsile stret.rth of the main bulk of the plate in directions parallel with the face, as compared F...h the tensile strength of the sarface lajer.

2.26. Discing."

The lasi layer of a laminated plate will bend like a circular diaphragm clamped around the edge and loaded at the centre. It will, therefore, bend with i: doubse curva:ure of the form shown in section in Fig. 15. Consequently, there will be radial tensile stresses 8 : up round the edge of the inner face and over the centre of the outer face. The thinnir the laser in relation to the diameter of the laminar crack, the less prosounced $w l l$ be the curvature round the edge in relation to that at the centre. Conzequently. che less severe will be the radial stress at the edge in relation to that at the Gentre anc the more likely is the plate to fail by star cracking, particularly if the back face is emorittled. Un the other hand, if the layer is thick in relation to the diameterof the layinar crack, the tensile stresses at the centre will be small compared with the stress at ìe edge, which results from the combination of the radial tensile stress due to bending aad the tensile stress perpendicular to the plate face due to the formard thrust on the dise as a whole, as indicated in Fig. 15. In this case a crack is likely to form irst round the periphery of the laminar crack, and, except in so-far as it is affected by =he anisoropy of the plate, it will tend to start towards the back face with a slight outward izclination as shown.

As the rack extends towards the back face and the thickness of metal remaining ancracked is decreased, the local concentration of tensile stress over the edge of the crack and in a direction perpendicular to the plate face will tend to increase, while the -adial striss will decrease. Therefore. the direction of the resultant stress, which will -emain ectal in magnitude to the tensile strength of the steel, will swing progressively :omards tie normal to the plate face, as cracking proceeds. This process, considered as occurring in stages, is illustrated in Fig. 16.
Suppose the radial component to be x_{1}, and component of stress perpendicular to the plate sace to be $y_{\text {, }}$ when the crack starts. Then the crack will have a direction perpendicula: to R_{1}. When the crack has reached a, the radial stress will have decreased to x_{2} and the other component will have increased to y_{2} and the crack will proceed in a direction zerpendicular to the new resultant R_{2} and so on for further stages c and d. In practise, the process is continuous and the crack takes a curved path of the form shown in Eigs. 4 and 5.

As the srack nears the back face, a stage is reached at which the shear stress round The edge a the disc and perpendicular to the plate face exceeds the shear strength of ihe plate naterial. Therefore, the final separation of the disc occurs br shear failure and the : :ight sheared edge, shown at A in Figs. 4 and 5 , is a characteristic feature of discs.

Cast aryour does not display the laminar weakness which may occur in rolled armour, jut way jare a grueral low level of elongation under tensile stress due to intergramular weaknesir or inclusions. Thus, it is not uncommon to find cast armour which is quite as ductit as rolled armour when subject to shear stresses in the absence of tensile atress. $\begin{aligned} & \text { at which is capable of little elongation in tension. This combination of pro- }\end{aligned}$ perties :-ads to farour star cracking and back petalling, but may cause flaking if the internal reakness of the plate is too pronounced.

The wat in which flaking occurs is lest seen by analogr with discing. As in the case of rolled y late, anuular cracks may be started in a cast plate by incipient plugging. Since thte are no preferential planes of weakness, howeser. the cracks do not spread outwarde parallel with the plate face. Instead, they proceed towards the back face in the same tay as the edge crack on a disc in rolled plate, but with greater initial outward inc-nation due to the high component of atress parallel with the shot axis. When no seconsary break-uj, occurs. this results in a flake of the form shown in Fig. 6, although. in practice, further break-up usually occurs due to the brittle nature of plates which $f:=$ in this way.

[^2]SHOWING HOW THE FORWARD SHEARING TO FOKM A BACK BULGE WILI SET UP TENSILE STRESSES OVER THE EDGE OF LAMINAR DEFECTS

Fig. 14
SHOWING HOW A CLOSE PACKED PILE OF THIN PLATES WOULD DEFORM,TO INDICATE WHERE TENSILE STRESSES MIGHT BE EXPECTED IN A SOLID PLATE.

FIG. 15

SHOWING THE VARIOUS STRESSES WHICH EXIST AT THE EDGE
OF A DISC, BEFORE THE CIRCUMFERENTIAL CRACK STARTS.
TENSILE STRESS x is dUE TO bending of the disc, and y is THE TENSILE STRESS OVER THE PERIPHERY OF THE LAMINAR CRACK.

THE DIRECTION OF THE RESULTANT TENSILE STRESS ACROSS THE CRACK at any stage is represented by Rn And the stresses due to bending AND TO THE TENDENCY OF THE REMAINING UNGRACKED LAYER TO MOVE AWAY FROM THE LAYERS ALREADY CRACKED.ARE REPRESENTED BY x AND Y RESPECTIVELY. THE CRACK WILL TEND TO PROCEED AT RIGHT ANGLES TO THE RESULTANT STRESS AT EVERY STAGE.

3. Resistavce to Penetration and Energy Absorption : Normal Attace.

'There are two different ways in which a plate may defeat a shot. It may offer so much resistance to penetration that the shot is over-stressed and breaks up, or it may detorm in such a way that all the shot energy is absorbed betore perforation occurs. While these iwo effecta are related, because energy absorption is the space integral of the resisting force, it dues not follow that a plate which gives a high peak resistance to penetration gives the highest energy absorption on perforation.

In a later chapter, reference will be made to the determination of the load necesmary iur pemeration, by means of static punching tests, and by retardation measurements on projectiles. It is interesting to note, however, that a usefyl estimate of the load necessiry for penetration may be made by assuning that a plug of shot diameter and of full plate thickners is driren out of the plate. This would be expected to give a high value for the peik luad. since nome easier form of penetration might prevent the development of the shear stress necessary for plagging, but it is found to give loads corresponding closely with thuse determined by the the other methods. If this mechanism of penetration is assumed. the mean axial compressive stress P over the cross sectional area of the plug is given by the expression

$$
\begin{gathered}
\pi \frac{d^{2}}{4} P=\pi d d S \\
\text { or } P=\frac{4 t S}{d}
\end{gathered}
$$

where s :
Thus, ior a shot penetrating a plate having a shear strength of 40 tons per square inch, corresponding to a hardness around 300 B.H.N., the mean compressive stress orer the plug section would be expected to have the following values for plates of the thicknesses shown:-

Plate thickness in calibres	P M Mean compressive Etress over the cross sections ares of the plug	Observed values (static penetration)
0.75	tons/sq. in. 120	160
1.0	200	117
1.25	240	149
1.5	280	173
1.75	320	192
2.0		209

In the dust column are shown approximate mean ralues taken from the static punching test resuis sbown in Chapter 3.
As will be sten, the agreement for plates of moderate thicknesses is rery good, while, as mirlt be expected, the estimated values tend to be high for plate thicbnesses aromnd 2 calibres. This is due to the fact that appreciable sbot penetration occurs before phir. ring stars in plates of this thickness, so that the early stages of static penetration are tasier than they would be if a full thickness plug were formed. In the case of dymanic lenetrarion. however, a considerable increase in plate resistance must be expected during the earlr stages of penetration, due to the inertia of the material displaced. This is particularlr the case with thick plates which must always be attacked at high velocities if perforation is to be achiered. Therefore. the simple method of estimating the maximim thrist betreen plate and shot appears to be a good basis for design, and has been used for this purpose for some time. From the ralues of P, the mean compressive stress p^{1} over any transverse section of the projectile at and behind the shoulder mar be calculated br means of the formula

$$
p^{1}=P \frac{W-w}{W} / \frac{4 A}{\pi \bar{d}^{2}}
$$

where p^{1} is the stress over the section
W is the projectile weight
w is the weight forward of the section
A is the area of the section.

3.1. Energy for perforation.

Not only does the assumption that perforation wr-urs by the formation of a plug of foll olate thickness permit the calculation of a nood approsimation to the masimum compresare stress imposed upon the shot, but it almo allows the calenation of the ellery expended by the shot in perforating the plate. This leads to a penelration formula ineiring omme similarity to those already in use, und gives values for energy absorption of the righ: order. It is considered, however, that its real ralue is that it demonstrates the dependence of plate performance on a complex of mechanical properties wore clearly than other lines of approach adopted so far.

Scopose the stress and strain to be uniform over cylindrical shelle concentric: with the shot axis, and let \mathbb{S} and θ be the shear strens and shear strain, resiectirely, at a distance r froc the axis. Then $S=F(r)$ where the form of F is not necessarily kown, but is such that Ξ decreases with increase in r.

If the stress-strain relationship for the plate unterial is represeuted by $\theta=f\left(\delta^{\prime}\right)$, if the ffix o relates to the values of S and θ at the yield point. and if the elastic uork priou to yisid is neglected, the work per unit volume in a thin shell of radius r is given by

$$
\begin{gathered}
e=\int_{\theta_{0}}^{\theta} S d \theta \\
e=\int_{S_{0}}^{S} S f^{1}(S) d S=I(S)-I\left(S_{0}\right)=I[F(r)]-I\left(S_{0}\right) \\
\text { where } I=\int \delta f^{1}(S) d S .
\end{gathered}
$$

Sines the volume of an elementary rylindrical shell is $\because \pi r$ tdr, the totall struin energy E is given by

$$
E=2 \pi t\left[\int_{r_{0}}^{r_{1}} r I[F(r)] d r-\frac{1}{2} I\left(S_{0}\right)\left(r_{1}^{2}-r_{0}^{2}\right)\right]
$$

where - , is the shot radius and r_{1} is the radius outside which no plastic deformation occurs. provided deformation within the plug is neylected.

If tix specific assumptions are made that: -
(i). The stress-strain curve is linear,
iii). The stress is inversely proportional to the radial distance for values greater than r_{0},
then $\theta=f(S)=\phi \frac{\delta-S_{0}}{S_{F}-S_{0}}$ where ϕ is the strain at the stress S_{F} which canses
and $S=F(r)=\mathcal{S}_{\boldsymbol{r}} \frac{\boldsymbol{r}_{\mathbf{0}}}{\boldsymbol{r}}$ at the moment of phog separation.

$$
\begin{aligned}
& \text { Hence } l=\int S f^{2}(S) d S=\frac{\phi}{S_{F}-S_{0}}\left(\frac{S^{2}}{2}\right) \\
& \text { and } l\left[F^{\prime}(r)\right]=\frac{\phi}{2\left(S_{F}-S_{0}\right)}\left(\frac{S_{F} r_{0}}{F}\right)^{2} \\
& E=2 \pi t\left\{\phi \frac{S_{F}^{2} r_{0}^{2}}{2\left(S_{F}-S_{0}\right)} \log _{e} \frac{r_{1}}{r_{0}}-\frac{\phi S_{0}^{2}}{4\left(S_{F}-S_{0}\right)}\left(r_{2}^{2}-r_{0}^{2}\right)\right\}
\end{aligned}
$$

If the yield ratio $\frac{\boldsymbol{S}_{F}}{\bar{S}_{0}}=\lambda$, and since $r_{0}=\frac{d}{2}$

$$
E=\frac{\pi t \phi d^{2} S_{0}}{4}\left\{\frac{\lambda-2}{\lambda-1} \log \lambda-\frac{\lambda+1}{2}\right\}
$$

Therefore. since a shot must have at least this energy for perforation, the relationship ior bare perioration becomes

$$
\begin{aligned}
& \frac{1}{2} W r^{2}=k t d^{2} \\
& \text { or } \frac{W t^{2}}{d^{3}}=C^{1} \frac{t}{d} \\
& \text { where } C^{1}=\frac{\pi \phi S_{0}}{2}\left(\frac{\lambda^{2}}{\lambda-1} \log \lambda-\frac{\lambda+1}{2}\right) \frac{2240 \times 32 \cdot 2}{12} \\
& =9440 \phi S_{0}\left(\frac{\lambda^{2}}{\lambda-1} \log \lambda-\frac{\lambda+1}{2}\right)
\end{aligned}
$$

W is in lb.
v in f.s.
t and d in inches
and S_{0} in tons per square inch.
If $\lambda=1-\mu$, and if $\mu<1$ and terms of higher order than μ^{2} are neglected, the formula may be written as $C^{\prime} \triangle 9440 \phi S_{0}\left(\mu+\frac{\mu^{2}}{3}\right)$

It is of interest to compare this relationship with the modified de Marre formula, Which is in general use in this country, namely

$$
\frac{W v^{2}}{d_{2}}=C\left(\frac{t}{d}\right)^{1 \cdot 43}
$$

The onit difference in form is the absence of the index $1 \cdot \frac{13}{}$ in the formula derived from the sasamption of perforation by plugging. The appearance of this feature in ige empirizal formala is, no doubt, accounted for by the fact that as plate thickness iacreases. :here is a progressive increase in shot penetration before plugging starts. Although :is has the effect of reducing the load necessary to cause plugging, it has an even grater effect corresponding to an increase of ϕ in equation (4) above, so that $\frac{\square v^{2}}{d^{2}}$ will iend to increase more rapidly than $\frac{t}{d}$.

Althong: no reliable data defining the behariour of armour plate steels under shear stress are arailable, reasonable assumptions lead to values of $C^{\prime \prime}$ of the the same order as.

Thus, if :t is assumed that

$$
\left.\begin{array}{l}
S_{0}=30 \text { tons per square inch } \\
S_{F}=40 \text { tons per square inch }
\end{array}\right\} \lambda=1 \cdot 33
$$

and $\phi=\overline{5}$ (corresponding to a reduction of area in tension of $6 \bar{j}$ per cent.) then $C^{1} \triangle 0.52 \times 10^{6}$.
This raje of C^{1} is calculated on the assumption that the perforation occurs by the Eormation of a plog through the full plate thickness, without any prior penetration of The shot igad. Therefore, it is to be expected that it will agree best with observed ralues for olant headed shot attacking plates of 1 calibre or less in thickness, since the zesumed \Leftrightarrow onditions are then more closely satisfied. For good ogival headed shot, of ¿-4 c.r.h.. observed ralues of \mathcal{C} are around $1 \times 10^{\circ}$, while for flat headed shot values of \mathcal{C} around $0 \div \times 10^{6}$ are observed.

It is of :nterest to note also, that if plugging occurs in the manner supposed, the lip formed roind the hole, or the back face, should have a width

$$
\frac{d}{2}(\lambda-1)
$$

Thus. is $\lambda=1.33$, the lip width is $0.17 d$, and, as aill be seen from Fig. 3, the lip width Es of this irder with plates of about 1 calibre thickness.

As alresty mentioned, the ralue of this deriration of a penetration formola lies, not in its use to predict shot performance. for which existing empirical formule are better. but in the demonstration of the way in which plate performance depends directly upon rield stres in shear, and strain at fracture, and also depends in a more complex manner apon rield ratio.

4. Angle Attack.

4.1. The offect on hole and plug form.

So far. Z this chapter, only normal attack of plates has been described. Under Serrice conditiona. bowerer, normal attack of armour is seldom possible and it bas now become customar? to carry ont derelopment trials, to test plate or shot performance, with angles
of at:ack of 30 degrees or more. This section will be devoted to a description of the way in wich the mode of deformation and failure of plates is affected by increase in the angle of arack. In this section, unless otherwise mentioned, shot with a 1.4 c.r.h. form are rnsidered.

At small angles of attack, little change occurs in the mode of plate failure. The bole in tif: plate usually has a direction intermediate between the direction of attack and the norms, and the other main characteristics such as plugging, discing, back petalling, etc., remaiz the same. At angles of around 20 degrees to 30 degrees, however, some differences become apparent.

The plate thickness which can be defeated by a given shot decreases with increase in ingle of attack. As a result, failure by plugging tends to be more common than back petaling at angles of attack of 30 degrees or wore, in plates free from serious laminar weabress, since at these angles the attack is, in practice, likely to be made against relatively thin pates and sach plates tend to plug. Moreover, when plugging occurs at these angles it is cually found that the plug is of the shape shown in Fig. 17. It is ronghly elliptical in secrion, with a minor axis equal to the shot calibre, and with a major axis slightly greates and lying in the plane of attack. The manner in which such a plug forms is ahown diagremenatically in Fig. 18. An this shown, the plug shears out over surfaces which are roughis perpendicular to the plate facé, but which show a currature due to the tendeney of the plag to have a hingeing action abont the end furthest from the shot point.
The sact that the plug forms by shearing in a direction roughly perpendicular to the plate face is of interest, since it might therefore be expected that only the kinetic energy associs:ed with the nornal component of velocity of the shot would be effective. This does. E fact, appear to be the case, since a penetration formula of the form :-

$$
\frac{W V^{2} \cos ^{2} \theta}{d^{3}}=C\left(\frac{t}{d}\right)^{1 \cdot 43}
$$

Where \ddagger is the angle of attack gives the best agreement with observed results for anglea from 0 degree to 30 degrees.

As tix angle is increased further, the major axis of the plug tends to increase in length, and it $: s$ found that the shot performance falls off even more rapidly with θ than is sugges:-d by the formula abore. This may be due to the fact that the sheared surface of the -ing is increased in area by the increase in the major axis.

At argles of the order of $4 \overline{5}$ degrees to $\overline{5} \overline{5}$ degrees. perforation of the plate appears to occur i= two stages, as illuntrated in Fig. 19. First, a plug is driven out of the plate as show in Fig. 19(a), and then a wedge shaped section of plate is removed from the side of the inle, as shown in Fig. 19(b). The evidence supporting this conclusion is that shots stiking at a velocity slightly below the critical velocity produce only the first stage of dameze and do not pass through the plate, while, after the plate has been completely defeate:- the wedge shaped piece of plate already referred to may often be recovered. Since tis tro-stage penetration obviously involves uneconomical expenditure of energy, it is noi surprising that shot performance at these angles is relatively poor.

Atevarbgher angles, unless the plate is very thin, shots ricochet withont perforation. ' The ange at which this occurs can be altered to some extent by change of head shape, as also san the striking energy necessary for perforation at swaller angles. This will be discrised further in a later eection.

4.2. Resetion on the shot.

The raction on the shot is naturally more complex in the case of angle attack than When the shot strikes the plate normally. When the ogive enters the plate, it first of all experences a greater thrust on the side array from the normal, both because a greater area is ir contact with the plate, and because displacement of plate material on that side of the heid is more difficult [Fig. 20(a)]. Consequently, the shot experiences a torning moment vhich canses it to swing away from the normal.

As perutration proceeds, a stage is reached at which the plug begins to shear out, and as a resc.: the thrast of the side of the ogive remote from the normal is decreased, while that on :ie other side of the head becomes relatively high [Fig. 20 (b)]. Therefore, at this stage the shot starts to swing back towards the normal and continues to do so as the shot בoves forward antil rotation in stopped by the shot borly striking the side of the hole. 28 Illustrated in Fig. 20 (c).
It is nor at present possible to determine the stress system set up in a shot during angle attack wan certainty, but it may be of interest and of some value to diecuss what might be sxpected.

Fig. 17.
Two views of plug produced by attack at 30 degas.

FIG. 18

SHOWING POSITION OF THE SHEAR FRACTURE CAUSING PLUG FORMATION IN 30° ATTACK.

TENSILE FRACTURE FREQUENTLY OCCURS AT A.B. DUE to hinging of the plug.

$10 \cdot B$

TWO STAGES OF PENETRATION AT ANGLES OF 45° TO 55°

$$
10-c
$$

FIG. 20.
SHOWING TURNING OF THE SHOT DURING

Cons:ier the case of a shot which has penetrated a plate at 30 degrees, to the print where sear fretare to form a plug has not quite started, and ignore, for the sake of simplic:ty. the small turn away from the normal which would already have occurred. Now ccasider the resultant forces on the tro parts of the head on either side of a plane througit the shot axis and perpendicular to the plane of attack. Let these be referred to as sides \pm and B, as in Fig. 21 . Then it is to be expected that the resultant force on side A will át approximately along LM, while that on side B will act along I'Q. Moreorer, since tie area of head in contact with the plate is greater on side B, also because the plate on side B is less free to deform, the maguitude of the resultant thrust on side B will be greaser than on side A. Hence, the resultant thrust on the head as a whole might be expred to act along OD, which will not coincide rith the axis of the shot, or pass througs the CG of the shot, nor is it likely to be perpendicular to the plane of the plate face $F G$. As a result, there will be a turning moment on the shot, of magnitude $O R \times(T D$, and there will be a shear stress over the plane FG.

The compressive stress perpendicular to the face FG will not be aniform, bat will tend to be haghest on side B. Further back in the shot body, hoperer, this state of affairs will be reversed, and the compressive stress on side A will be greater than on side B, due to the zdded effect of bending stresses. Even so, howerer, it is donbtful whether thi: prodaces a tensile stress on side B anywhere in the forward part of the shot body. It appears therefore, that at angles of attack of 30 degrees or so, up to the stage of plug formation, the main effect of angle is to give a non-uniform distribution of compressive stress in the forward part of the shot. This may have the effect of increising the maximum compressive stress set up in the shot, for a given thickness of plate, but it is unlikely that tezsile stresses are produced, unless the shot deforms plastically.

Whe: shear fracture occurs, so that the plug is free to move, the resultant force on side B will be greatly reduced. The compressive stress across the face F(i will then be small and the shear stress over this face will become relatively large. Also, althongh the thist along LM may be small compared with the earlier value of or, it is likely to hart a greater turning moment on the shot, due to the greater magnitude of CE is compard with OD. Therefore, when the plug separates, the shot is likely to suffel a greater angalar acceleration towards the normal than the orisinal acceleration anay from :.. Moreover, since the axial compressive stresses will largely disappear, the bending stresses are likely to give an appreciable tensile stress in the forward part of the shor body on side A. Which may possibly cause tensile fracture in some cases.

Finaly, when the forward part of the shot passes through the hole formed in the plate. ine angalar relocity of the shot will be destroyed rapidly by impact of the shot body erainst the sides of the hole, as shown in Fig. 20 (c). The lending stresses imposed by this sudden retardation are likely to be greater than those associated with either the inizal torn away from the normal or subsequent swing bark. It is probable, too, that tia tensile stresses produced in the shot body on side A by this violent angular retarcaion are responsible for many of the observed cases of shot break-up at angles of 30 degrees or so.

To raiuce the tendency of A.P. projectiles to fail under the influence of tensile stresses prodacid by the bending wounents set up during angle attack, it is usual to reduce the hardnses of the body progressively from shoulder to base. As explained in Cbapter 3. this cai be done in such a was as to match the fall off in axial compressive stress, while giring un increased resistance to failure under tensile stress.
: 4.3. The effect of shot head shape.
Hean: shape has a pronounced effect on shot performance. So far, in this chapter, consiastation has been limited to shot of around $1 \cdot 4$ c.r.h. form. since this has been generaly adopted as the most satisfactory compromise for angles of attack around 30 depses. However, there is no one bead form which is best for all conditions of attack and it is of interest to consider the effect of changes in bead shape on shot perforzance against various thicknessess of plate and at various angles. In general, these sfects may be explained quite satisfactorily in the light of the nechanism of penetrifion already postulated.

The jbserced facts are that blunt heads perform better against thin plates, while longer zeads give better performance against thick plates at normal, but not at anyles.

Witi plates of around one calibre or less in thickness, penetration tends to orrur by the fomation of a plug of full plate thichness. Therefore, energy expended in driving a poin:ed head into the plate, before a calibre diameter plug can form, is largely wasted. Hence it would be expected that blunt headed shot would succeed at lower stribing veloci=2s. As already stated, this is observed to be the case and flat fronted shot will
sacceed against thin plates, with striking energy only about half that necessary with ogival headed shot. As plate thickness is increased, however, the load necessary to produce a plag of full plate thickness becomes greater than the force necessary to cause penetration by radial displacement of plate material and, as a result, it is found that more pointed shot, which farour this mode of penetration, perform better than blont shot. Moreover, as plate thickness increases, the shock loading produced in blunt headed shot becomes so severe that the shot break up. Thus, for normal attack of plates of around two calibres thickness, head forms of 2 c.r.h. or even more pointed forms are found to be better than a 1.4 c.r.h. shot.
As angle of attack is increased, there is a progressive tendency to favour short head forms. This is so for two main reasons. Firstly, the turning moments exerted on a shot during angle attack are increased by increase in head length. Secondly, there mast, in practice. be a reduction in plate thickness attacked, as angle is increased, if success is to be achieved.

At angles of 60 degrees or so, ogival headed projectiles fail against quite thin plates, due to the fact that the turning moment on the shot is sufficient to canse ricochet in the mannes shown in Figs. 22 and 24. This tendency to ricochet can be reduced and the angle at which it occurs can be increased by the adoption of a suitable flat fronted head form, such as that shown in Fig. 23 (b).

Consider the case of a flat ended cylindrical projectile striking a plate at a large angle as. illostrated in Fig. 23 (a). Then, as the edge of the flat front penetrates the clate, it is to be expected that there will be a reaction of the plate on the shot approximately in the direction $A B$ as shown. If the shot length is not more than about 3 to 4 calibres, then the reaction $A B$ is likely to fall between the plate and the C. of G. of the sinot, so that there will be an overturning moment rather than a couple tending to turn cihe base of the shot down on to the plate. Moreover, by suitable adjurtment of the size of the Hat front, in the manner shown in Fig. 23 (b), it is found possible to prevent Either skidding or toppling of the projectile and so make penetration poasible at higher angles.

Moreorer. such shaping of the head tends to make the shot penetrate in such a manner that it uses all its kinetic energy, rather than only that associated with the normal component. and so improves performance even at rather lower angles where ricochet tould not oceur.

5. Falltrid of Shot.

In this rection the failures of armour piercing shot will be dealt with tirst and the more difficult problem of shell failare will be considered later.

It is rery common for A.P. shot to break up on passing through a plate. Provided inis break op does not raise the critical velocity at which the shot is able to defeat a giren thickness of plate, and provided a reasonable proportion of the shot passes through Eise plate, this is not considered to be a disadrantage. In fact, a spray of fragments of sjot may be more lethal than one unbroken projectile.

Shot break-up, with no appreciable effect on the critical velocity for penetration, may occur with normal or angle attack, but becomes more common as the angle of attack iacreases. There seems litcle doubt that the most usual cause of shot break-up, with good quality shot, is the imposition of bending stresses during penetration at angles other than oormal. Since there is usually no appreciable change in critical velocity, it cas only be assumed that the shot break-up occurs when the plate has been holed or When hole formation is nearing completion. It has already been suggested that the bending stresses imposed upon the shot by striking the sides of the hole are the most severe of those imposed during attack, at angles up to 30 degrees or so, and it appears that these are the usaal causes of break-up.

Another canse of break ap, which might be expected to operate during normal attack, ase well as during angle attack, is the formation of a tensile stress wave by a sudden release of compressive stresses in the shot at the time when the plug separates. Such a mechanism might be expected to operate even more effectively if a shot were fired into 3 thick plate at a velocity too low for success, since the compressive stress would be released very suddenly when the shot came to rest. Therefore, the fact that shot often rebonnd brizen from a plate which they will penetrate unbroken at a slightly higher $\nabla=$ locity lenis sopport to this explanation of shot brenk up.

So far, reference has been made only to forms of ahot break-op which do not affect performance. There are, however, other forms of shot break-ap, and of shot deformation, winich occar with poor shot or under severe conditions of attack, and which have an adiverse affect on performance. The most serious of these is shatter.

FIG. 21.

SHOWING THE NATURE OF THE FORCES ACTING

 ON THE HEAD OF A SHOT DURING PENETRATION.

$$
\text { . } \quad 2-A
$$

FIG. 22.

STAGES IN RICOCHET.

$12-B$

EFFECT OF HEAD FORM ON RICOCHET.

$12-c$

Fig. 24.
Multiple spark photographs of the ricochet of a model shot.

$$
12-0
$$

5.1. The scurrence of shatter failure.

In the early part of the last war, shatter of armour piercing shot presented a very serious problem. It was found that there was a linit to the extent to which performance could be increased by increasing shot velucity, because, above some limiting velocity, even gooc quality shot were found to sutfer break up at such an early stage of penetration thät there nas a marked adverse effect on performance. This form of failure pias known as "sharer " and use of the term still persists eren though it is now thought that it suggeste a false explanation of the phenomenon.

Againa thick plate at normal, shot usually start to shatter at velocities around 2600 fic. A $\stackrel{y}{c}$ plate thickness is reduced, below about two calibresy the velocity at which shatter occurs tends to increase, while it falls fairly rapidly fith increase in angle of attack. At 30 degrees, for example, shatter may occur against thicker plates at relocities as low as $200-2400$ fis.

Againer relatively thin plates, for which the critical velocity of the shot is well below the shatter velocity, shatter does not matter much. All that happens is that, when the shatter relocity is reached, the hole in the plate tends to be larger in size than the shot section and of irregular shape, while the shot emerges from the plate in many sinall fragmencs instead of being whole or in a few large pieces. Against thick plates, on the other hand, the shatter velocity is less than that necessary to defeat the plate. It is then fond that instead of a shot prodacing an impression of its own shape in the plate. it produces a shallow impression, smooth round the outside and rough in the middle. These impressions, like most of the forms of plate damage produced by A.P. shot attik, are quite consistent in appearance, and a section of a trpical shatter impression is shown diagramatically in Fig. 20. When this type of shatter damage occurs the shot fail to penetrate the plate at relocities at which they would normally be expected :o succeed. Only when the shot velocity is increased considerably is it possible to hole tie plate, and then the hole has a ragged appearance characteristic of saccess with shater.

Againsc plates of a certain limited range of thickness, for which the shatter velocity is not mack greater than the critical velocity for success without shatter, it is found that shot will succed without shatter over this narrow range of relocities. At the shatter velocity ie shot fail to penetrate, and only by a considerable increase in velocity does. it again cecome possible to hole the plate.

Fig. 3f presents the results of a trial carried out fith 2-inch A.P. shot against several ticknesses of plate. This shows how shatter affects performance.

5.2. The mechanism of shatter failure.

Recorty of fragments of shattered shot shows that shatter is a failure of the forward end of ize shot, since the rear half of the shot is quite frequently recorered whole, while ths formard end is usually broken into many pieces. Also, the break up of the formard ind of the shot results predominantly from brittle tensile fracture.

When a shot fails to perforate a plate, due to shatter, the impression produced in the plate is =ormally quite shallow, and is usually rather less than the shot bead length in depth. This proves that the break up must occur at a very early stage of penetration, which, i- rurn, confirms the riem that a shatter is essentially a head failure.

The texile stresses which cause shatter of the head might be a direct result of the impact. sithough it is not obrious how they would arise, or ther might result from plastic ciormation of the shot by the axial compressive stresses. The second of these possibilizes is considered to be the true cause of shatter.

Consicir first the case of a shot striking the plate normally. It has already been mentionei that, under these conditions, both retardation observations on shot and static ponching tests show that the compressive stresses around the shoulder rise as the head becomes $=$:mbedded in the plate. If these stresses are higher than the compressive yield stress of the shot in the shoulder region. then set-np of the shot is to be expected. This mill estaidish hoop tensile strains of considerable magnitude, and since hard shot steel has virtcally no elongation in tension, longitudinal cracking of the shot will result. After thig had bappened, complete break-np of the forward end of the shot is likely to follow. Fith the results illustrated in Fir. 27. Fragments of the shattered head are embedder in the centre of the impression. giving the characteristic jagged surface, while mushrooging of the rest of the shot scoops of the surrounding part of the plate and leaven it with a smooth, sheared appearance.

In orcis that the dependence of shatter upon striking velority and plate thickness may be :aderstood, it is necessary to take into account the inertia of the plate material displacec by the shot nose.

The precise magnitude of this effect rould be difficult to establish, due to the complex mancer in which plate material is displaced, but as a means of showing the order of the effect it is not unreasonable to suppose that a volume of plate equal to the volume of the siot head is given a velocity of the order of half that of the shot during a penetratiou of one calibre depth. Then, if the shot is assumed to impart this energy uniformly during one calibre of travel, the resulting pressure over the shoulder section would be

$$
\frac{v^{2} \rho \nabla}{8 d} \times \frac{4}{\pi d^{2}} \times 12 \text { poundals per square inch, }
$$

Where V is the volume of the shot head in cubic inches (which is $0.48 d^{3}$ in the case of a 1.4 c.s.h. shot) and ρ is the density of the plate in $\mathrm{lb} . /$ cubic inches $=0.283$.

Heace, the increase in axial pressure which might be expected to result from inertin is of the ordel

$$
\begin{aligned}
& \frac{6 \times 0.48 \times 0.283 v^{2}}{\pi} \text { poundals per square inch } \\
& \text { or } \\
& \frac{6}{32 \times 2.40} \times 0.48 \times \frac{0.283 v^{2}}{\pi}=3.62 \times 10-6 v^{2} \text { tons per square inch. }
\end{aligned}
$$

Thas, for a striking velocity of 2500 f.s., the pressure due to inertia alone might be expected to be around 25 tons per square inch.

It will be seen, therefore, that the axial pressure set op in a shot will be appreciably affected by the inertia of the plate material, and this effect increasen rapidly with increase in swiking relocity t, since it varies as v^{2}. Moreover, it has already been shown that the compressive stress set up in the shot will increase with plate thickness, up to a thickness of calibres or so, above which the initial stages of penetration are not affected by the presence of the back face. Hence, if shatter results from set-up of the shot under the indounce of the axial compressive stress, this form of failure woald be expected to occusp at veiocities sbove some critical value, and this shatter velocity would be expected to fals Fith increase in plate thickness, up to thicknesses of the order of 2 calibres, and then remsin constant. This is, in fact, observed.

A: angles other than normal, up to 30 degrees or so at least, the werhanisin of shatter is coasidered to be essentially the same. As has already been pointed out, however, the compressive stresses in the region of the shot shoulder are likely to be non-uniformly distibuted and to have a higher maximum value. Hence, shatter tends to occur at lower velocities.
The foregoing hypothesis as to the mechanism of shatter leads to the conclusion that the endency of shot to shatter wrould be decreased br increasing their shoulder hardness and compressive strength. On the other hand, if shatter were due to the direct estajlishment of tensile stresses on impact, without prior set-up of the shot, it rould be expected that the tendency to shatter would be reduced by reducing shot hardness and 60 icereasing tensile strength and ductility. It is found that increasing hardness reduces the :endency to shatter, which supports the bypothesis presented.

6. Face-Hardevid Plate.

In order to reduce the effectiveness of A.P. projectiles. by cansing early break-up, armior is sometimes face-hardened, either by flame hardening or by carburizing. Such armour is rery commonly used for the main armour belt of warships, and less often for armored fighting vehicles.

Tie hardened layer is nsually around $\frac{f}{4}$ to of the total plate thickness, and has a hariness of the same order as that of the usual steel armour piercing projectiles. When fired against such armour, steel projectiles fail in much the same way as when they sharier againgt homogeneons plate, and it is likely that the mechanism is much the same. Dat to the very high yield point of the hardened layer of the plate, the compressive stresses in tie shot woald be expected to reach high values at an earlier stage of penetration and at a point further forward in the head. Hence, it appears probable that the failure occurs at as even earlier stage in penetration than normal shatter, and the effect in shot performance is even more marked.
7. Cap Action.

When face-hardened plate was first used for warships it was found that shell could be prerented from breaking ap on the plate face by fitting a steel cap over the shell head. In the drat place, for attack of plate at angles near the normal, these caps pere of soft stes. Later for attack at larger angles, caps with hardened fronts were used. These were found to offset the effect of the hard face very satisfactorily. Finally. when shsier was experienced with anti-tank A.P. projectiles, this trouble also was overcome by stting shot with piercing caps.

- FIG. 25.

SECTION OFA TYPICAL SHATTER DENI

 SMOOTH SHEARED SURFACE AB AND CD WITH JAGGED AREA AND EMBEDDED SHOT FRAGMENTS IN CENTRE.
1^{4-A}

FIG. 26.

(b) Shot sel's up by shear over conical surfaces, then splits longiiudinally. Cracks extend into the head.

(C) Shot bursis and mushrooms out at shouldier. Fragments of nose bagin to soread.

(d) Further mushrooming of shot scoops out a shallaw impression as indicated by dalled line. Fragments of nose left embedded. Base of shot camplete, but with longifudinal splits.

In spite of the successful use of piercing calls, the manner in which they operate has never ben fully explained. When used against face-hardened plate, it appears probable that the cap operates by cracking up the hardened face, by virtue of its own energy, and does not transmit much shock to the shell head due to its own break-up. It may be, also, that the skirt of the cap, which is normally left soft on large shell, gives some support to the head of the projectile during the critical early stages of penetration.

The action of cape used against homogeneous armour to present shatter is, perhaps, even more difficult to explain. It las been found that the effectireness of the cap is not very sensitise to variations in shape or hardness, and it appears probable that the main effect of the cap is to overcome some inertia of the plate, material. by expending its own enersy while breaking ul, and so reducing the load on the projectile itself. This is largely an unsupported supposition, howerer, und further investigation will be necessary to elucidate the mechanism of cap action.

8. Fallores of Armour Piercing Shell.

Armonr piercing shell suffer much the same types of failure as A.P. shot, with the wain difference that forms of break-up and damage which are unimportant with shot, so long as they do not raise the critical relocity, are important in the case of shell because they frerent satisfactory detonation of the filling.

Armour piercing shell, particularly the larger ones, are usually treated to a lower hardness level than shot, although the general form of the lardness gradient from nose to base is much the same. Some reduction in hardness would, in any care, be necessitated by the fact that steels of lower incrinsic hardness are used and br the tendency of fully hardentd large shell to crack. Quite apart from this, however, lower hardness levels have been adopted to improve the resistance of the shell to failure under the influence of bending stresses and side blows. As already mentioned, there is some doubt as to whether appreciable tensile stresses are set up in the forward part of a projectile when penetrating plates at angles up to 30 dearees or so unless plastic deformation in compression orcurs first. Therefore, there is some cloubt as to whether the hardness of large shell has not been lowered too far.

8.1. Head failures of shell.

liercing shell suffer head failures akin to shatter failures of shot, except that, because they generally have lower harduess and greater ductility, wore plastic deformation precedes fracture, the break-up is not so complete, and brittle tensile fracture is not as predominant or obrious. Nevertheless. it apluars probable that the mechanism of failure is similar and that the basic canse of failure is set-up under the influence of axial compressive strensee.

In this connection, it is of interest to see whether the compressire stresses to be expected are of the right magnitude to cause set-up. Large piercing shell, as at present produced, will normally just defeat a 1 calibre thick face-hardened plate at normal, or a 0.85 calibre thickness plate at 30 degrees. Consider the case of normal attack, and suppose for the present that the shell cap just smashes the bardened face, learing the shell to defeat the remanimp thicbness of plate (approximately $0 . S$ calibre). Then, if the plate has the normal bardness level aromd $200-20$ B.A.N. with a shear strength of around 33 tons per sipuare inch, the pressure set up in the shoulder section of the shell mould be expected to be around 30 tons per square inch. since the head is about a quarter of the total shot meight. When attacking the thinner plate at 30 degrees, compressive stresses of the same order would be expected.

Since many heary shell have shoulder hardnesses around 360 B.H.N., with a corresןwnding sield in comparison around (ij- 70 tons per square inch, these must suffer some set-up when fired arainst the targets considered. This set-up is limited by the fact that the period of orerstressing is short and the relative morement of parts of the shell on either side of the overstressed section is limited by their inertia. Therefore, provided the sheil has adequate transrerse ductilitr, it π ill not break up, although some energy will be wasted in setting up the shell with a consequent raising of the critical velocity. l'roduction of successful shell of this trpe requires a careful balance betreen shell setup. concrolled bs compressive strength, and transrerse tensile elongation.

In ise light of the foregoing argument. it might be concluded that shell should be made burder in the shoulder region. It does not follow, however, that the likelihood of slitii break-up will be reducer progressively by increase in shoulder hardness, since the reciaction in the ability of the steel to endure tensile strain mar be reduced more rapidy than the set-up of of the shell. On the other hand, if the shell hardness in the
ejoulder region is increased to a level where the compressire strength is high enough to frevent plastic deformation, no hoop tensile stresses will be produced and low tensite Eiongation may no longer matter. It would appear that a compressive yield of around Fit to 85 tons per square inch is necessary to ellsure this, or a shoulder hardness of around 450 B.H.N. It is, in fact, found that shell of this mean shoulder hardness will perform Fell, if produced by methods which give a surface bardness rather lower than the hard ness over the middle of the transverse section. Shell of the same mean shoulder hart ress, but produced by other methods, have not so far been successful. It is not known whether this is fully accounted for by the presence of the softer skin, but it is of intereat to note that if there is still some small set-up in such shell, the bigher ductility of the soiter sarface layer would be an advantage, since the greatest transverse elongation occurs is the surface layers.

8... Base damage to shell.

Piercing shell are also subject to two other common forms of damage. These do not appreciably affect the ability of the shell to periorate the plate, but prerent effective desonation.

When shell are fired at angles of 30 degrees or more, the turning of the shell as it passes through the plate causes it to sufier side blows torards the rear end, as a reall of striking the sides of the hole (see Fig. 20). This may sometimes cause the shell to split longitadinally, cause a transverse crack, tear off the whole base of the shell, or carse crushing or ejection of the base adapter which carries the fuse. To reduce the likilihood of splitting, shel are normally made quite soft towards the base, with hardnesi around 250 B.H.N. This, however, encourages rather than prevents deformation. To redace the libelihood that the adapter will be squeezed out or crushed enough to danage the fuze, it is usual to fit larger shell with a " reliered adapter." This is rozghly cup shaped, with a truncated conical external surface, and a flat base into which the fuze is screwed. The cup has an external thread towards the lip, and is screwed in:o the shell, forward of the shell base, so that the flat base of the adapter is roughly in the plane of the shell base. Due to the form of the adapter, this leaves a space bermeen the rear part of the adapter and the shell nall, with the result that a side blot on the base of the shell bends in the shell wall nithout crushing the fuze. Also, because the adapter is screwed in forward of the shell base, it is not necessarily remored erea whin part or whole of the shell wall is torn away round the drising band groove.
an alternative line of approach wonld be to attempt to prevent the turning of the sho: and so eliminate the damaging side blows on the base. It has already been pointed out that the reduction of head length, or even partial truncation of the head, serret this purpose, and trials uith shell of this type show them to suffer little or no crushing of :je base. In general, however, the adoption of blunt Lend form tends to increase incience of failure by loss of the adapter by a different werhanism.
i : is quite common for shell to lose their adapters without suffering any base damage, oth: than some evidence of shearing of the threads holding the adapter. This form of failgre is not filly understood, but is thought to be due to the violent elastic recovery of -E shell as the first pressure wave returns from the base as a tensile wave, in the sate: way as a blow on one end of a bar will throw off a mass in contact with the other end. This riew is supported by the fact that the phenomenon is found to occur more fregzently with blunt headed shell. No real cure has yet been found.

PENETRATION FORMOL $玉$.

By D. G. Sopwith.

1. Introdoction.

In order to be able to design an armoured structure to withstand specified conditions of attack. or an armour-piercing projectile to defeat under specified conditions a given armoured structure, formule relating the velocity required for perforation to the -elevant farticulars of the plate and shot are required. Such formulie are generally referred io as "penetration formulx," although that term refers more logically to formula ziving the depth of penetration for velocities insufficient to give complete perforation.

The term "perforation" can be defired in many ways, according to the staye at Fhich deieat of the plate is considered to have occurred. Thus the "ballistic limit" of a plate is that velocity above which a given shot will produce a cracked bulre and zelow which it will produce an uncracked bulge. The "critical velocity" used in this chapter, however, is that corresponding to exact perforation with no residual velocity Efter the shot has perforated the plate, i.e., the minimum velocity at which the shot passes clean through the plate.
․1. Facisfs incolved in formule.
The fac:ors involred relate to the shot, the plate and the condition of attack, and are as foijws:-
(a). Shot.

Diameter	d.
Mass	M
(or weight W).	

Form \quad The length of the shot is given implicitly by W, the ratio W / d^{J} (sometimes called the "calibre density") being a convenient index. The head form is usually specified by its c.r.h. (calibre radius head), i.e., the radius of the ogire in terms of the diameter or calibre of the shot. For most A.P. shot this is about $1 \cdot 4$; for swall arms it is usually much greater, but in this chapter attention will be confined. unless otherwise stated, to uncapped unjacketed shot or shell having a c.r.h. of about $1 \cdot 4$. $\frac{W}{d^{3}}$ does not afford any direct indication of the length of a shell, on account of the presence of the cavity. Length in itself, hoшerer, has little or no effect on penetration.
Etrength The strength of the shot obviously enters into the problem: as yet no satisfactory method has been devised for predicting a the perforation of a shot which breaks up or deforms badly.
(b). Plate.

Thickness t
Size Above a reasonable minimum. cases below which are of little interest, area of plate has little or no effect.
Strength $\quad f$. For the moment the precise meaning of the term strength will not be defined. It can, honerer. be specified br a quantity f haring the dimensions of a stress.
(c). C'onditions of attack.

Velocity Striking velocity v_{0}.
Residual velocity v_{1}.
Critical velocity v (for exact perforation, i.e., value of v_{0} for which $v_{1}=0$).
Angle $\quad \theta$ (measured between the line of tight and the normal to the

2. Foryiule Based on Thbohetical Considehations.

2.1. The formula $\frac{W v^{2}}{d^{3}}=K \phi\left(\frac{t}{d}, \theta\right)$: dimensional aspect.

The main variables are thus H, d, t, f, v and θ. Dimensional analysis gives the nondimensional forms $\theta, t / d, \underline{f^{2} / f d^{3}}$, which suggest a formula of the form :-

$$
\boldsymbol{H} v^{2} / f d^{3}=\phi \quad(t / d, \theta)
$$

It will be noted that $1 / v^{2}$ on the L.H.S. is twice the kinetic energy of the shot. For conrenience re may use weight W instead of mass M and take f over to the R.H.S., giring:-

$$
\begin{gather*}
W v^{2} / d^{3}=K \phi(t / d, \theta) \quad \cdots \tag{1}\\
\text { where } K=f g(\text { and } W=M g) .
\end{gather*}
$$

The function $W r^{2} / d^{3}$ is referred to in C.S.A. as the " specific limit energy."
The problem now becomes that of defining the form of the function ϕ of t / d and θ, and of relating the coefficient K to the known properties of the plate.

2.2. Theoretical derivations of the form of $\phi\left(=\phi_{0}\right)$ for normal attack.

Considering first the case of normal attack $(\theta=0)$ the function ϕ becomes a function of $\dagger d$ only :-

$$
\phi(t / d, 0)=\phi_{0}(t / d) .
$$

Virious assumptions may be made as to the resistance offered by the plate to the passage of :he shot ; each assumption leads in gencril to a different form of the function ϕ_{0}.
2.21. Constant resistive pressure.

Robins and Euler (A5), about $1742-45$, assumed that the resistive pressure p against the shot mas constant, equal to p_{0}. The total resistance is then $p_{0} A=\frac{\pi}{4} d^{2} p_{0}$ ($A=$ projected ares of shot) and the energy absorbed in perforation $\frac{\pi}{4} d^{2} t p_{0}$ whence $W v^{2} / 2 g=\frac{\pi}{4} d^{2} t p_{0}$ or

$$
\begin{equation*}
W v^{2} / d^{3}=\frac{\pi g p_{0}}{2}(t / d) \tag{2}
\end{equation*}
$$

so that $K=\frac{\pi g}{2} p_{0}, \phi_{0}(t / d)=t / d^{*}$.
I: may be noted that if p is not constant, $p_{0}=\frac{2}{\pi g} \frac{W v^{2}}{d^{2} t}$ is its mean value. This is an incex of plate performance which has been used to a considerable extent in C.S.A. Its raije is of the same order as the Brinell or diamond prramid hardness (expressed in the sace units \div) of the plate, but the ratio of p_{0} to bardness rises with t / d and falls with increase of B or H ($\mathrm{B}=$ Brinell, $\mathrm{H}=\mathrm{D} . \mathrm{F}$. hardness number). The former fact shows that p is not constant.
2.22. Poncelet theory.

Poncelet (1829) (A5) assumed that $p=a+b u^{2}$ where a, b are constants and u is the ine:antaneous velocity of the shot. If a is put equal to p_{0} and b in the form $\gamma \rho^{1 / 2 g}$ (ρ^{1} $=$ censity of plate material) \S so that $p=p_{0}+\frac{\gamma \rho^{1} u^{2}}{2 g}$ this is equivalent to taking an additional drag term, with γ as " drag coefficient." This theory has been elaborated, and recent treatment on similar lines may be found in Refs. A 18, 42 and 264.

[^3]The eq-ation of motion of the shot is:-

$$
W \dot{u}=W u \frac{d u}{d x}=-A\left(a+b u^{2}\right) g
$$

Where $A=$ projected area of part of shot inside plate.
$x=$ penetration of nose.

$$
\begin{aligned}
& \text { Hence } \frac{-M}{g} \int_{0_{0}}^{0_{1}} \frac{u d u}{a+b u^{2}}=\int_{0}^{t} A d x=\text { volume of plate material displaced. } \\
& \log _{e}\left(\frac{a+b v_{0}^{2}}{a+b \sigma_{1}^{2}}\right)=\frac{2 b}{M} g \frac{\pi}{4} d^{2} t=\gamma W^{1} / W
\end{aligned}
$$

where $W^{1}=$ weight displaced $=\frac{\pi}{4} d d^{1}$
For exact perforation $v_{1}=O, v_{0}=v$, hence :-

$$
\begin{equation*}
\log _{e} \frac{a+b v_{0}^{2}}{a+b v_{1}^{2}}=\log _{e} \frac{a+b v^{2}}{a}=\gamma W^{1} / W=\log _{e} s \text { say } \ldots \quad \ldots \quad \ldots \quad \ldots \tag{3}
\end{equation*}
$$

This gives the following relation between the striking and residual velocities:-

$$
\begin{equation*}
v_{0}{ }^{2}=v^{2}+s v_{1}{ }^{2} \tag{4}
\end{equation*}
$$

.. ...
The raildity of this relation has been firmly established in the course of a considerable number 6 residaal velocity firing trials both in this country and the U.S.A. (A45, 15 ? , 153. 264 and 361). It forms the basis of the residual velocity method of determining critical riocities ($\mathbf{A} 30,150,197$ and 341), in which the residual velocity is obtained for two or mere values of striking velocity and $v_{1}{ }^{2}$ plotted against $v_{0}{ }^{2}$, a straight line through the pointe giving τ^{3} at $t_{1}{ }^{2}=0$.

The enだgy required for perforation is $\frac{M}{2}\left(v_{0}{ }^{2}-v_{1}{ }^{2}\right)=\frac{M v^{2}}{2}+(8-1) \frac{M v_{1}{ }^{2}}{2}$
This increases with v_{2} and so with r_{0}, the term $(8-1) \frac{M v_{1}^{2}}{2}=\frac{8-1}{8} \frac{M}{2}\left(v_{0}^{8}-v^{2}\right)$
representigg the energy imparted to the plate, partly in moving the plate material laterally and zirtly in accelerating any petals, discs, flakes, etc., forced off the back. It rould thus be expected that γ would increase with increasing amounts of back damage; this has been inown to be the case (362).

Equatica (3) gires : -

$$
\begin{aligned}
& \frac{a+b v^{2}}{a}=e_{2}=1+s_{1}+\frac{8_{1}^{2}}{2!}+\frac{8_{1}^{3}}{3!} \ldots \\
& \text { Where } s_{1}=\log _{8} s=\frac{\gamma W_{1}}{W} \\
& \text { or } v^{2}=\frac{a s_{1}}{b}\left(1+\frac{8_{1}}{2!}+\frac{8_{1}^{2}}{3!}+\ldots\right)
\end{aligned}
$$

$$
\text { Since } s_{1}=\gamma W^{1} / W=\frac{\gamma \rho^{1}}{W} \frac{\pi}{4} d^{2} t ; a=p_{0} ; b=\frac{\gamma \rho^{1}}{2 g}
$$

Finally:-

$$
v^{2}=\frac{2 g p_{0}}{W} \frac{\pi}{4} d^{2} t\left[1+c \frac{t}{d}+\frac{2}{3}\left(c \frac{t}{\bar{d}}\right)^{2} \cdots\right]
$$

$$
\begin{equation*}
\frac{W v^{2}}{d^{3}}=\frac{\pi g}{2} p_{0} \frac{t}{d}\left(1+c \frac{t}{d} \ldots\right) \tag{5}
\end{equation*}
$$

$$
\text { where } c=\frac{\pi \gamma \rho^{2}}{8 W / d^{3}}
$$

In pratice the terms in $(t / d)^{2}$ and bigher in the bracket may be neglected. This equation jifers from the constant presnure equation (2) in the introduction of the $c t / d$ ierms, girng

$$
\phi_{0}=\frac{t}{d}\left(1+c \frac{t}{d}\right), K \text { being } \frac{\pi g}{2} p_{0} \text { as before. }
$$

As mentioned abore, the mean resistive prensure p is found in practice to incresse with t / d and equation (5) can, by the correct selection of p_{0} and c, be made to fit firing trial resuits with considerable accuracy.

Tias, the Poncelet theory acconnts satisfactorily for the linear relation between atriking and residual energy and suggests a reasonable form for the function ϕ_{0}. Unfortunatelr. homever, the values of γ (" drag coefficient") derived from the slope s in residual relocity trials and from the rariation of critical velocity mith t / d [i.e., from c in equation (5)] are widely different; those derived from c are of the order of five times those derived from :

2.23. Shearing or puiching.

Fiirbairn (1861) put forward the following formula, based on the arbitrary assumptions that failure occurred by the shearing out of a plug, and that the load required varied linearly from a maximum on commencement of shearing to zero in a distance equal to the thicmess of the plate. The maximum load is $\pi d t q$ where $q=$ shear strength of plate material, and the energy absorbed is $\frac{t}{d} \tau d t q$, whence :-

$$
\begin{equation*}
\frac{W v^{2}}{2 g}=\frac{\pi}{2} q d t^{2} \text { or } \frac{W v^{2}}{d^{2}}=\pi g q(t / d)^{2} \tag{6}
\end{equation*}
$$

so that $K=\pi g q, \phi_{0}(t / d)=(l / d)^{2}$.
It will be shom later that a formula of this type, with v varying as t / d holds for low ralres of t / d (less than 0.4). Failure does not, however, take place by the simple mechanism assomed, and little significance can be attached to the "shear strength " q.

2.24. Plastic deformation theories.

Tarious attempts have been made to derive penetration formula from analysis of the plastic deformation. These necessitate idealizing the conditions so as to render the proslem tractable mathematically. Thus Ref. A20 gires a method in which, by considering the radial expansion of a small hole, expressions whose form is identical with that for constant resistive pressure [equation (2)] are derived. The values of p_{0} obtained were:-

For thin plates $p_{0}=2 f_{y}$. Ref. $5 \overline{7}$ corrects this to $1 \cdot 3 f_{y}$.
For thick plates $p_{0}=\frac{1}{2} f_{v}\left(1+\log _{e} \frac{2 E}{(5-4 \sigma) f_{v}}\right)$
$=2.7$ to $3.2 \mathrm{f}_{\mathrm{y}}{ }^{*}$
where $f_{y}=$ yield stress in compression
$E=$ Young's modulus.
A calculation for thick plates of the value of p_{0} required to enlarge radially a cylindrisal and a spherical hole, corresponding to limiting cases of very sharp and very blant sho: is given in Ref. 243. For no strain-hardening the resolts are :-

$$
\begin{aligned}
& \text { For sharp shot } p_{0}=\frac{1}{\sqrt{3}} f_{v}\left(1+\log _{e} \frac{\sqrt{ } 3 E}{2(1+\sigma) f_{v}}\right)=3.3 \text { to } 3.9 f_{y}^{*} \\
& \text { For blunt shot } p_{0}=\frac{2}{3} f_{v}\left(1+\log _{e} \frac{E}{(1+\sigma) f_{v}}\right)=3.9 \text { to } 4.6 f_{v}^{*}
\end{aligned}
$$

The paper gives formule for p_{0} for any stress-strain curve; at the high rates of strain ocmring in armour plate penetration, however, the yield and the maximum stress will prejably coincide so that no strain-bardening occurs and f_{y} will be somewhat higher than the istatic) altimate tensile stress. Thus the values of p_{0} given above are of the order of 3 to 4 times the ultimate tensile stress, i.e., of the same order as the Brinell or D.P. hariness (in the appropriate units). This is not very surprising since the firing trial is, in affect, a high speed indentation hardness test carried to much greater depths than is ceromary.

[^4]A third theory of this type is dereloped in Chapter 1. This is the only theory so far pot formard which indicates the part played by the ductility of the plate material. It leads to

$$
\begin{aligned}
p_{0} & =q_{0} \phi\left(\frac{\lambda^{2}}{\lambda-1} \log \lambda-\frac{\lambda+1}{2}\right) \\
\text { Where } q_{0} & =\text { shear stress at yield. } \\
\lambda q_{0} & =\text { shear stress at fractore. } \\
\phi & =\text { shear strain at fracture. }
\end{aligned}
$$

Plastic theory is not ret sufficiently advanced to enable ralues of λ and ϕ applicable to the complex stress srstem occurring in plate penetration to be obtained from mechanical tests, e.g., tension or torsion.

The theories in this section. therefore, do not lead to a new penetration formula, but to an explanation of the order of magnitude of the constant resistire pressure p_{0} in equation (2).
2.25. Pseudo-elastic deformation theory.

Refs. 88 and 121 treat the problem as that of elastic perforation of a plate having a redaced mouzlus of elasticity to be derived from comparixun with firing trials. The analrsis is complex, but leads to a formula of the form,

$$
\begin{equation*}
\frac{W v^{2}}{d^{3}}=K\left(\frac{t}{d}+k\right)^{2} \tag{7}
\end{equation*}
$$

where K and k are to be derived from firing trial results. The theoretical values, however. way be expected to give some idea of their dependence on the properties of the plate. These are $K=\frac{16}{15} g E^{1}$ and $k=\frac{b-0.33 l \text {, }}{d}$ where :-

$$
\begin{aligned}
E^{1} & =\text { reduced modulus of elasticity. } \\
b & =\text { height of bulge to commencement of cracking. } \\
l & =\text { lengrh of ogise of shot. }
\end{aligned}
$$

2.26. Eombinations of above theories.

The abore tormule can be combined in various ways. Thus, Dahlgren Proring Ground (350, 353) have suggested that the early stages of penetration may occur as in the crlindrical expansion solution above, the final stage (in ductile plate) occurring by the bending back of a series of sector-shaped petals. The analysis indicates that for thin plates the energy rarisa as $t^{2} d$; above a limiting thickness $n d$ this applies to the last $n d$ of the thickness ori 5 , the early solution applying to the front part of thickness ($t-u d$). Hence, the total $\in L=-y$ is $a d^{2}(t-n d)+\beta(n d)^{2} d$ where a and β are constants, i.e.,

$$
\begin{align*}
& \begin{array}{l}
\frac{W v^{2}}{2 g}=a d^{2}(t-n d)+\beta n^{2} d^{3} \\
\text { and } \frac{W v^{2}}{d^{3}} \\
=H\left(\frac{t}{d}-a\right) \quad \ldots \quad \ldots \\
\text { When } H
\end{array}=2 g a, a=\frac{n}{a}(a-\beta n) .
\end{align*}
$$

Ref. 152 rerives this formala by using constant resistance [equation (2)] followed by ponching "taation (6)]. Here again the energy in the front ($t-n d$) varies as $d^{2}(t-n d)$ and that in ie rear $n d$ as $(n d)^{2} d$. In this case, n is obtained by equating the load $\frac{\pi d^{2}}{4} p_{0}$ in penetration to that needed to shear the final ud, i.c., $\pi d . n d q$, so that $n=\mu_{0} / 4 q$. The resulting pesetration formulu is, of course, the same as (8) above.

A method siven in Ref. 139 has added to a constant resistance formula a term representing the enery absorbed in elastic vibration of the plate. The resulting equation is too complex for normal use.

3. Empirical Forms foh Function ϕ_{0}.

Irstead of deriving the form of the function ϕ_{0} theoretically, mans attempts hare been made to derire it empirically from firing trial results. These may be dirided into two clases-those giving a high degree of accuracy over a limited field and those giring a - moderate degree of accuracy over a mide range.

Of the former, the linear relation between critical velocity and thickness for a giren shot and type of plate-used for many years in this country by Fighting Vehicles (formeriy Tank) Design Department (69,244) is a very convenient and accurate one. This gives:-

$$
\begin{equation*}
\frac{W v^{2}}{d^{3}}=K\left(\frac{t}{d}+k\right)^{2} \quad \ldots \quad \ldots \quad \quad \ldots \quad \quad \ldots \quad \ldots \tag{7}
\end{equation*}
$$

as fof Refs. 88 and 121 above. Ref. 244 suggeste a constant value of k of 0.6 , but this will ce shown later to be incorrect.
The second class of empirical formulie, aiming only at giving a moderate accuracy over a wide range of diameter of shot, and thickness and type of plate. usually express firing trial results in the form of a coefficient \boldsymbol{w} hich varies less with these variables than does $\frac{W v^{2}}{d^{3}}$. The Li.S. Nary uses a function F such that :-

$$
\begin{equation*}
F^{2}=W v^{2} / d^{2} t \text { or } \frac{W v^{2}}{d^{3}}=F \frac{t}{d} \tag{9}
\end{equation*}
$$

Af das been shown above, for constant resistive pressure, F would be constant. In certain cases this is nearly true, and in any case F varies much less than $W r^{2} / d^{3}$.

De Marre. about 1870, introduced formula of the following type (expressed in the form now under discussion) :-

$$
\frac{W v^{3}}{d^{d}}=C \frac{t}{d^{b}}
$$

Th: form has since that time been largely used, at first in de Marre's original form with $2=1 \cdot 4, b=1 \cdot 3, C$ being expressed as the value for mild steel, $r i z ., 1 \cdot 044 \times 10^{6}$. (W) in lb.. t in f.s., t, d in inches) multiplied by a coefficient varying mith type of armour. More recently, Milne and Hinchlife (50 , 8ij) Lave pointed out that for dimensional correcness a and b should be equal and have modified the de Marre equation to :

$$
\begin{equation*}
\frac{W v^{2}}{d^{3}}=C(t / d)^{1.43} \tag{10}
\end{equation*}
$$

In :his form the equation has been very extensively used during the late war.
The equations (9) and (10) should be looked upon rather as convenient wethods of expresing firing trial results br a single coefficient than of predicting accurately the resuil: of firing a particular shot at a particular plate, unless the appropriate coetticient ©or a very similar case is known. Thus, in the nodified de Marre formula (10) $\log _{1 n}$: may rary from $5 \cdot \overline{5}$ to $6 \cdot 5$, corresponding to a more than threefold rariation in critical relocity. For a more limited range. equations mar be derived empirically for the variacion of F or C with t / d. Thus. for major calibre Naral projectiles, the C.S. Nary 1931 zenetration formula (390) was giren in the form (for normal attack) : -

$$
F=c_{1}\left(\frac{t}{d}-0.45\right)^{2}+c_{2}
$$

Atain. for 2.pr. shot, Milne and Hinchliffe (86) gave (for normal attack) :

$$
\begin{equation*}
\log _{10} C=5 \cdot 998+0 \cdot 227\left(\frac{t}{d}-1\right)=a+\frac{\beta t}{d} \quad \ldots \quad \ldots \quad \ldots \tag{11}
\end{equation*}
$$

Tht need for such expressions for the "constant" F or C in equations (9) and (10) showe that at least two constants are necessary to represent adequately the results of firing rials. One obrious possibility is to replace the exponent 1.43 in Milue aud Hinchliffe ${ }^{\circ}$ tormula by a disposable index, giving :

$$
\begin{equation*}
\frac{W v^{2}}{d^{3}}=C_{1}(t / d)^{m} \quad \ldots \quad \quad \ldots \quad \quad . . \quad \ldots \quad \quad \ldots \quad \ldots \tag{12}
\end{equation*}
$$

This form also has been used br manr inrestigators, e.g., O.C. M/emo. B $23,10 \mathrm{~S}$ (1931) gives sn analysis of bomb firing trials leading to the approximate value $m=17$.

Further empirical forms are suggested by the theoretical analyses in the previous section (the constant pressure and shearing theories each contain only one constant and so are not suitable) as follows:-

$$
\begin{array}{rllllllll}
\frac{W v^{2}}{d^{3}} & =A \frac{t}{d}\left(1+e \frac{t}{d}\right) & \ldots \\
& =K\left(\frac{t}{d}+k\right)^{2} & \ldots \\
& =H\left(\frac{t}{d}-a\right) & \ldots \tag{8}
\end{array}
$$

where nom all constants A, c, K, k, H, a are to be derived from firing trial results. It has been found (152,364) that for a given series of results, i.e., for a given shot against plate of a given type for ralues of t / d from, sar, 0.5 to 2 , any of the formulx (5), (7), (8), (11) and (12) can be fitted with a degree of accuracy comparable with the experimental accaracy in the firing trials. Hence, the most useful trpe of penetration formala will be that in \boldsymbol{w} hich the constants can be best correlated with the properties of the plate.

3.1. Correlation of constants ucith properties of plates.

The fire formala suggested above are:-

$$
\begin{align*}
& \text {. } \frac{W v^{2}}{d^{2}}=A \frac{t}{d}\left(1+0 \frac{t}{d}\right) \quad . . \quad \text {... } . . . \quad . . \quad . . \quad . . . \quad . . \tag{5}
\end{align*}
$$

$$
\begin{align*}
& =H\left(\frac{t}{d}-a\right) \tag{8}\\
& =C\left(\frac{t}{d}\right)^{1.4 \mathrm{~L}} \text { where } \log _{10} C=a+\beta \frac{t}{d} \ldots \tag{11}\\
& =C_{1}(t / d)^{m}
\end{align*}
$$

In the first three, the derivation suggests that the constants A, K and H are likely to rary with the hardness or ultimate tensile stress of the plate, whilst c, k and a depend -ather on the ductility of the material. A series of firing trials on plates of Brinell hardsesses B of 250,350 and 450 and $t / d=0.75$ to 1.8 was relorted in Ref. 102 , where an analysis of the results is giren according to the above five formulie. It was found that whilst equations (5), (8), (11) and (12) gave curves of A, H, C and a sboring a maximum within the range, with considerable doult as to interpolation between the hardness ralues used. K was proportional to B. Tbeve trials. carried out with model $2 \cdot \mathrm{pr}$. shot of $0 \cdot 290$ inch diameter (0.189 scale) were later repeated (Ref. 360) with shot 0.540 inch, 0.490 inch and 1.565 inches diameter ($6.345,0.633$ and full scale $2 \cdot \mathrm{pr}$.) and with plate of 300 Brinell. These confirmed the above conclusions and indicated the presence of a scale or size effect, which will now be discussed.

4. Thr National Phisical Laboratory Fohmula fon Normal attace;

4.1. Effect of size of shot.

None of the above formule indicates specifically the existence of a scale effect, i.c., they Euggest that geometrically similar shot would perforate plate of the same ratio tid at the same critical velocity c. At the beginning of the late mar it was not buown whether or not this was the case, no systematic trials on this issue having been carried ont in the so years or so during phich armour piercing shot had been used. The series of trials jescribed in the last section was consequently carried out at the National Physical Laboratory for the Ordnance Buard. for the dual purpose of clearing up this point (scale effect) and ascertaining the effect of plate hardness.

The results of the trials indicated a detinite scale effect, the critical velocity \boldsymbol{r} for a given $: d$ decreasing with increase of diameter d. For two giren diameters of shot the difference. in t increased with hardness B, but was independent of t / d. Analysing the results, Sopwith (3f1) found that ther could be represented with a probable error of $21 \mathrm{f} . \mathrm{s}$. or i-3 per cent. by the following formula :-

$$
\begin{align*}
\frac{W v^{2}}{d^{2}} & =\left(43 \cdot 4 \sqrt{B} \frac{t}{d}+747-\frac{54000}{B_{0}-B}\right)^{2} \\
& =1630 B\left[\frac{t}{d}+\frac{17 \cdot 2-\frac{1240}{B_{0}-B}}{\sqrt{B}}\right]^{2} \tag{13}
\end{align*}
$$

The symbol B_{0} in equation (13) denotes a limiting hardness depending on the diameter d of tie shot. For the sizes inrestigated ($0 \cdot 189,0.345,0 \cdot 633$ and full scale $2 \cdot \mathrm{pr}$. shot) it was iound that it could be represented by the empirical equation :-

$$
\begin{equation*}
B_{0}=500-160 \log _{10} d / d_{2} \tag{14}
\end{equation*}
$$

where $d_{2}=1.565$ inch $=$ diameter of 2 -pl. shot.
Equation (13) is of the form $\frac{W 0^{2}}{d^{3}}=K\left(\frac{t}{d}+k\right)^{2}$; as stated in the last section K is proportional to B. k, as also stated above, is likely to be dependent on the ductility of the plate material. For a given plate quality, however; the ductility will itself be a function of hardness B, as equation (13) shows; for other qualities of plate, the relation between l and B might be different. It ras found, homever, that this equation, dericed from trials on 3 Fer cent. chrome-molybdenum steel plate of 250 to 450 Brinell, applied also to mild steel 364) of 110 Brinell, so that the relation betreen k and B did not appear to depend on composition of plate.

For tro shot of the same Γ / d^{3} fired at plates of the same bardness B and thickness ratio $: / d$ the difference in critical velocity due to difference in scale is given by :-

$$
\begin{equation*}
v^{\prime}-v^{\prime}=\frac{54000}{\sqrt{W / d^{9}}} \frac{B_{0}^{\prime}-B_{0}^{\prime}}{\left(B_{0}^{\prime}-B\right)\left(B_{0}{ }^{\circ}-B\right)} \quad \cdots \quad \ldots \quad \ldots \quad \ldots \tag{15}
\end{equation*}
$$

where' and " refer to the respective sizes of the two shot.
In Jractice, two shot of different diameters will usually differ somewhat in $\mathrm{W} / \mathrm{d}^{3}$ and the \dot{d} ference in v will consequently vars slightly with t / d, the difference being onls in part jue to scale effect. The following table shons the predicted difference in r due to scale effect for various sizes of shot, all of $W / d^{3}=0.603$, as used in the trials discussed. In the case of the scale model two pounders the experimental values are given in brackets; those for the $6 \cdot \mathrm{pr} ., 17$ - pr. and $3 \cdot 7 \cdot$ inch guns are illustratire of that part of the differsnce due to scale effect only, the ralues in brackets being derised from trials referred to laier.

Difference in critical relocity (f.s.) due to scale effect between various sizes of shot and 2.pr.

Shot	Diameter	Brinell hardness of plate B			
		200	250	300	350
$\therefore 189$ scale 2-pr.	$\begin{aligned} & \text { ins. } \\ & 0-296 \end{aligned}$	-	+88(90)	+120(145)	+202(110)
$\therefore 345$ scale 2-pr.	0.540	-	+63(60)	+ 94(105)	+153(170)
\therefore-33 scale 2-pr.	0.990	-	+31(30)	+ 48(70)	+81(105)
2-pr.	1.565	0	0	0	0
6-pr.	2.231	-21	$-31(-10)$	$-50(-20)$	-93
17 -pr.	2.98	-41	$-61(-60)$	-101(-90)	-199
3.7-inch -	$3 \cdot 685$	-53	-80(-40)	$-135(-100)$	-276

This table shows clearly the danger of using scale model results scaled up without correction.

4.2. Effect of kardness of plate: Optimum hardness.

Verious trials carried out during the late war (e.g., Refs.' 256,343) hare indicated the fact ihat. in general, there is an optimum hardness of plate to resist a particular attack, doe to the fact that increasing hardness is associated with decreasing ductility. Of the penctration formulæ discussed above, equation (13) is the only one ruich takes this into accrint. For maximum r, differentiating the R.H.S. of equation (13) and equating to zero. we have:-

$$
\begin{equation*}
\frac{t}{d}=\frac{2490 \sqrt{ } B}{\left(B_{0}-B\right)^{2}} \tag{1G}
\end{equation*}
$$

Valnee of optimum hardness calculated from equations (14) and (16) for values of t / l from 0.5 to 2 and for shot of the calibres considered above are shown in Fig. 28. It will be seen that the optimum harduess decreases with increasing diameter of shot and increases with t / d. The fact that the optimum hardness raries with t / d means that the best hardness for a plate of given thickness cannot be settled without reference to the type of attack. Thus, a 3 -inch plate to give maximum resistance against 6 -pr. attack will be wo hard for maximum resistance to $3 \cdot \pi$-inch shot; to illustrate this point lines of constanr thickness of plate have been included in Fig. 28.

Fig. 29 ahowe for $t / d=0 \cdot 5,1,15$ and 2 , the values of $v \checkmark W / d^{3}$ for hardness $B=200$ to 450 for $0.189,0.345,0.633$ and full scale $2-\mathrm{pr}$. and for 6 -pr., 17 -pr. and 3.7 -inch; on each carve tee optimom hardness is indicated by a circle.' It will be seen that the carves are fairly flat, especially below the optimum harduess. Increased resistance to smallcalibre shot-say less than $d=t / 2$-is of little importance, since these shot are anlikely ever to perforate the plate ; again, increased resistance to large shot-say over $d=t$ will in zeneral result only in decreasing the residual energy of the shot which will perforate the plate in any case. Hence, it is beat to base the hardness of plate on a t / d of say 1.5. This gives an optimum hardness of about 325 for 60 mm . plate $/ 2$-pr. and 285 for $4 \frac{1}{2}$ inch plate 11 i -pr.; these may be taken as typical conditions both as regards thiekness, diameter and hardness at the beginning and end of the war of 1939-45.

4.3. Limits of applicability and accuracy of equations.

Eyarion (13), the ausiliary equation (14) for B_{0}, and the derived equations (15) and (16) thos reproduce the main features observed in actual firing trials at normal, viz., the relacion betreen thickness of plate and critical velocity for a given shot [equations (13) and (14)], the effect of size of shot [equation (15)] and the optimum hardness [equation (16)]. They were derired, as stated above, from firing trials with shot 0.296 to 1.56 -inch diameter against 3 per cent. Cr. Ho. steel plates from 0.5 to 2 diameters thick and of Brinell harduess 200 to 450 ; the corresponding critical relocities were from 1000 to 3000 i.s. Sobsequent trials with $0 \cdot 236$ inch shot against mild steel showed that the equations also applied to a Brinell hardness of 110 for t / d ap to $3 \cdot 4$. In all these trials, the probable error of the critical velocity derived from equations (13) and (14) was 21 f.s. or 1.3 per cent.

The ralue of W / d^{3} in the above trials was 0.603 ; rarions trials have shown that the assamption that, for perforation of a giren plate, $W v^{2}$ is constant is accarate enough for all practical purposes, at any rate for normal values of W / d^{3}. The generalization of the eycation (13) to a general value of W / d^{3} is thus justified. The trials now to be described contirm this.

A ver comprehensive series of tiring trials has since been carried out by Fighting Vehicles Design Department. These were carried out with $6 \cdot \mathrm{pr}$., $1 \mathrm{i} \cdot \mathrm{pr}$. and $3 \cdot 7$-inch shot against $3,3 \frac{1}{4}, 4 \frac{1}{3}$ and 6 -inch plate of twelve different trles (compositions and steel makers, of ultimate tensile stress frum about 45 to 70 tons/in. ${ }^{2}$ (about 290 to 330 Brinell-about 1000 critical relocity determinations in all. Equations (13) and (14) have ben applied to the analysis of these rexults, using a ratio of ultimate stress to Brinell of 0.21 . For 3 per cent. chrome-molybdenum steel from three makers the deviation from the formula was rarely greater than 2 per cent. in τ. For other types of steel the deviation on the high side was up to about $60 \mathrm{f} . \mathrm{s}$. over the whole range of ultizate stress and on the low side from 60 f.s. (for 45 tons $/ \mathrm{in} .^{2}$) to $100 \mathrm{f} . \mathrm{s}$. (for 70 tole in. ${ }^{2}$) with an occasional ralue down to 150 f.s. low at the higher ultimate.
One limitation, as mentioned above, is the lower limit of t / d of about $\frac{1}{2}$. Later trials show that the formula holds down to $t / d=0 \cdot 4$, below which t is proportional to t / d as in Section 2.23. The question of thin plates is cousidered more fully in Section 6.

5. Effbct of Angle of attace.

The description in Chapter 1 of the very comples mode of perforation of a plate by a projectie striking obliquely suggests that it will be extremely difficult if not impossible to obtain a penetration formula for oblique attack at once accurate and simple. Nerertheless. formule hare been obtained which gire a greneral idea of the effect of angle.
As a irst approximation, the effect of obliquity may be considered as being equivalent to increasing the thickness of the plate from to t sec. θ, i.e., the thickness in the line of fligit: this method has been nsed by Naral Research Laboratory, U.S.A. (A 13). Alterna:ively, the velocity v may be resolved into v cos. θ perpendicular and $v \sin$. θ parallei to the plate, the latter component being neglected. This method is used in the modifiti de Marre formula of Milne and Hinchliffe, equation (10), (Refs. 50, 86) and and is the C.S. Navy F-function, equation (9), (Ref. 390); in both cases the general form replaces 0 by v cos. θ.

Both chese methods are approximate only and tend to give too low a critical relocity for angies over say 20 degrees. This fact is realized in the two formula just mentioned (Milne and Hinchliffe and U.S. Navy), where the substitution of v cos. θ for v in the formais is not sufficient to express the full variation with angle. Thus, Milne and Hinchicfe's fall expression for \boldsymbol{C} for the 2 -pr. shot (Ref. 86) is :-

$$
\begin{equation*}
\log _{10} C=5.998+0.227\left(\frac{t}{d}-1\right)+0.947(1-\cos . \theta) \tag{11a}
\end{equation*}
$$

Various modifications have been tried in order to improve these approximations, e.g.,
$v \cos ^{2} \theta$ (Ref. 164);
$t(\sec \theta+\tan \theta)($ Ref. 148).
These forms have only a limited range of application. It may be noted that if $\frac{W v^{2}}{d^{2}}=C_{1}(t / d)=\quad$ [equation (12)] the use oi $v \cos \theta$ corresponds to that of $t(\sec \theta)^{2 / m} \wedge$ t (sec j) ${ }^{1.4}$ for the modified de Marre formula.

The constants in penetration formule for normal attack may be regarded as functions of angies in the general case and these functions may be plotted or tabulated, with no attemp; to represent the variation with θ analytically. This procedure has been adoptei in Refs. 69 and 244 , where it is stated that no general formula is possible, and in Ref. 366.

Finaily, these functions of angle obtained experimentally may be represented by formais frankly empirical. Thus, the F function of Section $\overline{5}$ has been expressed (Ref. 389) $F=a+b \cos \theta$, where a is a function of t / d and both a and b change their values at $\theta=44$ degrees. Alternatively, $F=a+b \theta^{2}$ has been used (Ref. 390). A formula of this type, derived from an extension to angle attack of the firing trials descrited in Sertion 6 of this Chapter, is given in Ref. 437, this is as follors :-

$$
\begin{equation*}
\frac{W v^{2}}{\left(d_{8}\right.}=\left[43 \cdot 4 \sqrt{B} \frac{t \sec \frac{3}{2} \theta}{d}+916-\frac{11800}{65-\theta}-\frac{54000}{B_{0}-B}\right]^{2} \tag{13a}
\end{equation*}
$$

For normal attack $(\theta=0)$, equation (13a) reduces to equation (13) except that the middle term becomes $\mathbf{i 3 t}$ instead of 747 ; this corresponds to a constant difference of 16 f.s. between the batches of plate used in the two series of trials.

The optimam hardness condition becomes:-

$$
\begin{equation*}
\frac{t}{d} \sec \frac{3}{2} \theta=\frac{2490 \sqrt{B}}{\left(B_{0}-B\right)^{2}} \quad \cdots \tag{16a}
\end{equation*}
$$

The optimum hardness curves (Fig. 28) are still applicable provided the abcissa is taken as $\frac{t}{d}$ sec. $\frac{3}{2} \theta$. The optimum bardness is found to rise with angle of attack.

Angies of attack exceeding 45 degrees will be considered in Section 6.

6. Thin Plates $\frac{t}{d}$ sec. $\theta<0.4$.

There are comparatively little systematic data on the perforation of thin plates (t / d less than about $\frac{1}{2}$); such data are mainly for isolated cases of capped shell against faceharderad plate. If a single formala is to cover all values of t / d it is obviously necessary that τ should be zero for t / d zero, i.e., $\phi(0)=0$. Some of the formulx discussed in the prepiors sections do not falfill this condition and so cannot be applied to thin plates; The eqations necessarily represent an analytical approximation to the correct value and some cisagreement outside the fitted range is to be expected. It is, howerer, possible that there is a change in mechanism of failure at some critical thickness, necessitating a change of formula. Firing trials against mild steel of low t / d at Road Research Laboratory (82), Prince:on University and N.P.L. (A45, 364) indicated that least for this material \boldsymbol{v} was p.opportional to t / d (for t / d less than about $\frac{1}{2}$) ; the Princeton trials (A45) and some at N.P.L. (3G4) showed that this was far from being the case at higher t / d, equation (13) being epplicable to the latter. In order to obtain further data, the firing trials at N.P.L. referrei to in sections 4 and 5 were extended to as low a value of t / d as was practicable, viz., a $j o u t ~ 0.2$, corresponding to a critical velocity v of 400 to $500 \mathrm{f} . \mathrm{s}$. The results (Ref. 437) $o=3$ per cent. Cr.Mo. steel plate (Brinell 250 to 350), confirmed the indications on mild feeel. At low values of t / d plugging occurred. and t was proportional to t / d, equation (¿3a) holding for higher t / d; the intersection of the two lines was found to occur at $\frac{t \text { sec. } 6}{d}=0.4$.

FIG. 28.
OPTIMUM HARDNESS OF PLATE FOR GIVEN SHOT DIAMETER, PLATE THICKNESS AND THICKNESS-CALIBRE RATIO.

ElG. 29

- VARIATION WITH HARDNESS OF CRITICAL VELOCITY FOR GIVEN SHOT DIAMETER AND THICKNESS-CALIBRE RATIO.

Thus. if equation (13a) is expressed in the form :-

$$
\begin{equation*}
0=a \frac{t}{d}+\beta \tag{13b}
\end{equation*}
$$

this hulds for $\frac{t}{d}>0.4 \cos \theta$, below which :-

$$
\begin{equation*}
\theta=(a+2 \cdot 5 \beta \mathrm{sec} . \theta) \frac{t}{d} \quad \ldots \quad \ldots \quad \ldots \quad \ldots \tag{17}
\end{equation*}
$$

The accuracy of equation (17) is not as great as that of equation (13a); near the critical thickness $t / d=0.4 \cos \theta$ there is a slight " rounding off" of the transition from one line to the other.
As the angle of attack increases, the intercept term β in equation (13b) decreases, until at about 45 degrees (the probable limit of application of the formula) it vanishes.* In this case equations (13a) and (17) coincide; at 60 degrees the whole of the relation between \boldsymbol{c} and $t d$ was found to be of the form $t=c t / d$, the ralue of c being about twice that for normal attack.

7. Face-Hardentid Plate and Cappio Projbctiles.

The aiore discussion of penetration tormulet relates almost entirely to homogeneous plates artacked by monobloc projectiles. In Service, face-hardened plate is used occasionally in armoured fighting vehicles and more frequently in ship armour. In order to counteract the shattering effect on the projectile, the latter is provided with a piercing cap. Letailed designs of cap and hardness lay-outs of plate differ so much that few detailed conclusions can be drawn. In general, it may be said that to a first approximation the cap and the face cancel each other, and the case can be treated as monobloc thot c. homogeneons plate of the hardness of the main (back) portion of the plate.

Ehot inted rith a piercing cap mar encounter homogeneous plate; in such cases the critical relocity is increased. Thus, in Ref. 366, it was found that at normal the critical relocitr against 2-pr. A.P.C.B.C. was abont 100 f.s. higher (for $t / d=0.7$ to 2) although the capred shot were 15 per cent. henvier; this difference represents the combined effect of the piercing and ballistic caps.

The case of capped shell is of eren greater complexity since. oring to the presence of the carit. the strength of the shel] becomes of great importance. Some typical ralues of $\log _{10} \ddot{C}^{\circ}$ in the modified de Marre formula [equation (10)] are given below; \dagger these all apply to A.P.C. shell against C plate.

d	t	t/d	θ	$\log _{10} \mathrm{C}$	Remarks
ins.	ins		degs.		
15	12	0.80	30	<6-05	
15	12	0.80	40	6.21	
15	12	0.80	45	>8.24	
9.2	8	0.87	40	6.24	
9.2	6	0.65	40	6.06	
0.2	6	0.65	45	6.06	Low cr.h. (0.57 and 0.7).
8.2	6	0.65	50	>6.25	
6	12	2.00	0	$6.00+0.07$	
5-25	$4 \cdot 5$	0.86	30	$6 \cdot 13+0.06$	Small scale trials.
$5 \cdot 25$	$4 \cdot 5$	0.86	40	$6 \cdot 22+0-05$	Small male trials.
3.25	4	0.76	40	$6.18+0-01$	Small scale trials.
$5 \cdot 25$	4	0.76	45	6.25+0-01،	Small soale trials.
5.25	-	0.36 to 0.61	45 to 65	$\begin{aligned} & 6.11+0.44 t / d \\ & -0.30008 \theta \end{aligned}$	Small scale trials.

[^5]In the absence of a value of $\log _{10} C$ for a case reasonably similar to the one required, it will be found that the above values for angles from 30 degrees to 45 degrees can be represented by :-

$$
\log _{10} C=6 \cdot 50+\frac{1}{\frac{1}{d}} \frac{t}{d}-\cos \theta .
$$

with an error of ± 0.04 (i.e., ± 5 per cent. in v); the error in the case of low c.r.h. is larger.

8. Phactical applications or Formules.

8.1. Pormule and tables for A.P. shot up to 6 -inch against honoycneous armour yf , 900 to 400 Brinell.

The basic formula recommender is equation (13a) with the constant 916 adjusted to 928 to agree writh the normal attack results on the first batch of plates, which hare been taken as standard. That is :-

$$
\begin{aligned}
\frac{W v^{2}}{d^{2}}= & {\left[43 \cdot 4 \sqrt{B} \frac{t}{d} \text { sec. } \frac{3}{2} \theta+747-\frac{54000}{B_{0}-B}-\frac{182 \theta}{65-\theta}\right]^{2} } \\
& \left(N \cdot B \cdot 747-\frac{182 \theta}{65-\theta}=929-\frac{11800}{65-\theta}\right)
\end{aligned}
$$

This equation has too many variablen for ploting to be useful except in particalar cases e.g., particular shot against particular plate or at particubar augle (i.e, o function of t and θ or B respectively). The formula and that derived from it for thin plate may be expressed for ease of computation thus :-

$$
\begin{aligned}
& 0=K\left(a \frac{t}{d}+b\right) \quad\left(\theta \pm 45^{\circ}, \frac{t}{d}>k\right) \\
& F K \subset \frac{t}{d} \quad\left(\theta \times 45^{\circ} \cdot \frac{t}{d}<h\right) \\
& \text { where } a=a_{0} a_{1} \\
& b=b_{0}-b_{1} \\
& c=a+b / h \\
& h=0.4 \cos \theta \\
& \boldsymbol{X}=\sqrt{\left(W / \bar{d}^{2}\right)_{0} /(W / \bar{d})} \\
& a_{0}=43 \cdot 4 \sqrt{B /\left(\frac{W}{d^{3}}\right)_{0}} \\
& b_{0}=\left(747-\frac{54000}{B_{0}-B}\right) / \sqrt{\left(\frac{W}{d^{3}}\right)_{0}} \\
& a_{2}=\sec \cdot \frac{3}{2} \theta \\
& b_{1}=182 \theta /(65-\theta) \sqrt{\left(\frac{W}{d^{3}}\right)_{0}}
\end{aligned}
$$

Valas of $K, a_{0}, b_{0}, a_{1}, b_{1}$ and h are tabnlated in Table 1. K is a function of W / d^{3}, (W / \bar{a} ! being standard W / d^{3} taken as $\theta \cdot 6, K$ thas being a correction factor for other values of W / d^{3}. a_{0} is a function of B only, b_{0} of B and B_{0} (i.e., of d) and a_{1}, b_{1} and h are fractions of θ.

In come axtreme cases (high angle, hardness and/or calibre) b will be found to be negarive; in such cases it will probably be best to take b as zero.

8.2. Formsix and tables for other cases.

For other cases, the modified de Marre formula (10) may be used, provided a value of C or $\mathrm{zig}_{10} C$ for a reasonably similar case is known. Some values are giren in Section 7. For c:mpatation parposes the formula may be expressed :-

$$
\begin{aligned}
& \log _{10} \theta=\frac{1}{2} \log _{10} C-\frac{1}{2} \log _{10} \frac{W}{d^{2}}+0.715 \log _{10} \frac{t}{d}-\log _{10} \cos \theta . \\
& \text { Vadues of }-\frac{1}{3} \log _{10} \frac{W}{d^{2}},-\log _{10} 008 \quad \theta \text { and } 0.715 \cdot \log _{10} \frac{t}{d} \quad \text { are tabulated in Table } 2 .
\end{aligned}
$$

Telle 1.
Values of constants in perforation formula for A.P. shot v. homogeneous plate.

$\begin{gathered} 3 \\ \left(188-\frac{m m}{-} \cdot 9\right. \end{gathered}$	$\left(a_{k}\right)$	$\delta_{\text {b }}$ (f.e.)										
		$\begin{aligned} & d=1 \text {-incb } \\ & B_{t}=531 \end{aligned}$	$\underset{\substack{\text { 1-5.inch } \\ 503}}{ }$	$\underset{483}{2 . \operatorname{inch}}$	$\begin{array}{\|c} 2 \cdot 5-\text { inch } \\ 467 \end{array}$	$\underset{455}{3 \text { inch }}$	$\int_{445}^{3 \cdot 5-\text { inch }}$	$\underset{435}{4 \text {-inch }}$	$\underset{4 \cdot 27}{4 \cdot 5 \text {-inch }}$	$\begin{gathered} 5 \text {-inch } \\ 419 \end{gathered}$	$\underset{413}{5-5 \text {.inch }}$	$\begin{gathered} 6 \text {.inch } \\ 407 \end{gathered}$
$\geqslant 0$	78	754	734	718	704	691	680	887	657	646	638	627
210	812	747	727	709	88	680	687.	6.55	643	631	621	610
≥ 20	831	740	718	700	689	687	655	640	627	015	603	591
≥ 30	Sso	733	700	689	670	655	640	825	610	595	584	571
240	888	74	700	878	657	640	625	607	581	574	562	540
± 30	880	717	889	684	643	625	607	587	571	651	537	520
$\geqslant 60$	989	709	678	652	097	607	587	585	540	525	507	491
270	201	697	684	636	610	587	565	542	520	497	476	456
380	857	687	652	621	591	585	542	515	491	463	440	416
290	844	875	638	603	571	542	615	484	456	423	398	368
300	9%	882	621	584	540	515	484	448	416	378	347	312
310	-	649	603	562	520	484	448	407	368	325	288	252
320	102	634	584	537	491	448	407	358	312	281	216	163
330	10.13	817	582	507	456	407	358	301	252	181	125	59
340	1043	599	537	476	416	358	301	231	163	81	9	-
350	1148	580	507	440	368	301	231	145	59	-	! -	-
360	1003	558	478	388	312	231	145	35			-	-
370	14.8	532	440	347	252	145	35	-	-		-	-
380	1192	502	398	288	163	35	-	-	-	-	-	-
390	$1: 7$	470	347	216	59	-	-	-	-	-	-	-
400	113	432	288	125	-							-

W/d	E
3./imch ${ }^{\text {a }}$	
0.50	1-995
$0 \cdot 55$	1.044
0.60	1000
0-65	0-960
0.70	0-928

0°	a_{1}	b_{1}	h
	f.s.	f.e.	
0	1	0	0-400
5	1.009	20	0.398
10	1.035	43	0-394
15	1.082	71	0-386
20	1.155	105	$0 \cdot 378$
25	1.260	147	0.362
30	1.414	301	0.348
35	1.643	274	0.328
40	2.000	376	0-306
45	$2 \cdot 613$	530	0.283
50	-	-	0.257
55	-	-	0.229
60	-	-	0.200

Table 2.
Values of functions in modified de Marre formula.

ı/d	$0-715 \log _{1 / d}$	Diff.	W/a	$-1 \log _{10} \frac{W}{d 7}$	Dis.
0-2	I. 500	126	0.60	0.151	21
$0 \cdot 3$	$\overline{1} 626$	90	$0-65$	0.130	19
0-4].716	69	000	0.111	17
0-6	1.785	57	0.85	0.094	17
0.6	1. 842	47	0.70	0077	-
0.7	I.889	42	-	-	-
$0-8$	1.931	36	-	-	-
0.9	1. 967	33	θ°	$-\log _{20} \cos \theta$	Diff.
10	0	30	-	-	-
$1 \cdot 1$	00030	27	0	0	2
1.2	0057	24	5	0.002	5
1-3	00081	23	10	0.007	8
1.4	0.104	22	15	0-015	12
1.5	0.126	20	20	$0-027$	18
1.6	$0-146$	19	25	0.043	20
1.7	$0-165$	18	30	0.063	24
1.8	$0-183$	16	35	0-087	20
1.9	0.199	16	40	0.116	35
20	0.215	15	45	0-151	41
$2 \cdot 1$	$0-230$	15	50	0-192	49
$2 \cdot 2$	0.245	14	55	0.241	60
$2 \cdot 3$	0.259	13	60	$0 \cdot 301$	-
2.4	0-272	12	-	-	-
2.5	0.284		-	-	

CHAPTER 3.

THE STRESSES 1N PROJECTILES WHEN IENETRATING STEEL.

By C. A. Adams. .

1. Introduction.

From Chapters 1 and 2 it is clear that while penetration formalay give a ralue for the minimam energy required for penetration of a given armour plate, the success of the projec: de depends not only on its possession of the required energy, but also on its ability to n-itistand the stresses generated by the impact. For normal attack an estimate of the orcer of the stress can be obtained from indirect experimental evidence and some iudicacions are available from theoretical considerations. For oblique attack, information from either source is very scanty. In practice, more difficulties arise in designing a projestile capable of withstanding the combined strenses arising in oblique attack, than in eusering that there is sufficient strengit to prevent set-up or fracture from the axial compression due to normal attack. The knowledge so far obtained on the stressen to which projectiles are subjected on penetrating armour therefore falls rery short of that requir- Nevertheless it has a use, since to some extent increase in strength under compression is obtained at the expense of resistance under bending stress. Since it is certair: necessary to ensure that sufficient compressive strength exists, a working knowledge the limits set by this consideration enables the design to give no more compressive strencij than is essential, and so to increase resistance to failure under transverse stresses.

2. Dependence of Projectile Stresses on Head Resistance.

The state of stress in a projectile which is penetrating an armour plate can easily be found :o a first approximation, once the magnitude of the reaction at the head is bnown. Neglercing elastic effects, the instantaneous retardation at any part is the same throughout the projectile. The total force orer any crose sertion is therefore proportional to the produc: of the reaction at the head and the mass behind the cross section. Mith the assum-ion of a perfectly rigid shot the important facts to determine are theretore the magnicides of the reactions at the head and their dependence on plate thickness and qualitr. and projectile shape and velocity.

2.1. Eitimate of head resistance from plate hardness.

An :jproximate idea of the order of the pressure at the head can be obtained from the folluming simple considerations. The Brinell hardness number gives a measure of the presscre with which the material resists a surface deformation which is small in relation to its :otal thickness. If it is assumed that approximately the same pressure would be obtainit whaterer the size or shape of the indenter, then neqlecting any dynamic effect, this if the pressure which would act on the head of a projectile until deformation of the rear of the plate provided a relief of stress. This is certainly an over simplification, hut, if the sssumption is made, it would imply that the stress until back yielding occurs, i.e., the meximum stress approached in very thick plates, would equal the Brinell number. The fast that the Brinell measurement is obtained by dividing the resisting force by a curver area introduces a small correction which need not be taken into account in the presen: approximation. Since the units for Brinell numbers are kgs. per square mm. and 1 iz. per square $\mathrm{mm} . \equiv 0 \cdot 635$ ton per square inch the maximum pressures thus calculated $: f$ the range of hardness levels likely to occur in armour plate are as follows:-

Altematively, since the relation between Brinell number B and ultimate tensile strength f_{2} is. 子ery approximately, $\mathbf{B}=4 \cdot 7 f_{n}$ orer this range of hardness, the maximum pressure P antin: pated in a very thick plate on this argunent would be :-

$$
\begin{equation*}
P=3.0 f_{v} \tag{18}
\end{equation*}
$$

Pressures of this order may be expected to act ofer the tip of the projectile in the initial stages of penetration, and to be augmented by any dynamic term in the resistance. It follows that if the tip of the projectile is to withetand these pressures its yield strength must be at least three times the nitimate strengtt of the arget. The calculation, however gires little guide to the maximum pressures likely to ve reached in any cross section - uf the parallel body of the shot. In the first place, the indentation test allows some backward for of the material towards the surface, and therefore measures a pressure mhich is lers than that encountered deep in the material (see p. 41). Secondly, the stress gradient in general reduces the stress towards the rear of the projectile. Thirdy, in most practical applications the thickness of the plate will not le sufficiently great to justify the assumption that, at the stage at which the head is complefely immersed in the plate. the latter is still offering a resistance unmodified by distortion of the rear face.

2.2. Estimate of head resistance from penetration formula.

The mean resistance offered by a finite plate can be estimated very roughly by making use of the formulx discussed in Chapter 2. These formulx give the energy E_{c} in ft . pndls, required by a projectile of diameter d for the penetration of a plate of thickness t. If the reaction is regarded as starting when the projectile tip meets the plate aud ending when the shoulder emerges, then neglecting bulging, the mean force \bar{F} (poundals) acting over the distance $t+l$ (inches), where l is the length of the head of the shot, is given by:-

$$
\frac{\bar{F}(t+l)}{12}=E_{c}
$$

The mean pressure \bar{p} in tons per square inch over a section of diameter d inches is thus:-

$$
\begin{gathered}
\bar{p}=\frac{\bar{F}}{2240 g} \cdot-\frac{4}{\pi \overline{d^{2}}}=\frac{48 E_{c}}{2240 g \cdot \pi d^{2}(t+l)} \\
\text { or since } E_{c}=\frac{1}{1} M v^{2}=\frac{1}{2} d^{3}\left(43 \cdot 4 \sqrt{ } B \frac{t}{d}+74 \bar{i}-\frac{54000}{B_{0}-B}\right)^{2} \quad \text { (Chapter 2, page 23) } \\
\bar{p}=\frac{1}{93 \cdot 3 g \pi} \cdot \frac{d}{t+l}\left(43.4 \sqrt{B} \frac{t}{d}+747-\frac{54000}{B_{0}-B}\right)^{2}
\end{gathered}
$$

This equation embodies the "scale effect" as discussed in Chapter 2. For the present approsimate parposes it is sufficient to ase the ralue of B_{0} appropriate to the 2 -pr. scale. i.e., $B_{0}=500$. The equation then becomes :-

$$
\begin{align*}
\bar{p}=1 \cdot 064.10^{-4} \cdot \frac{1}{t / d+l / d} & \left(43 \cdot 4 \sqrt{ } B \frac{t}{d}+747-\frac{54000}{500-B}\right)^{2} \tag{19}\\
= & \frac{0 \cdot 20 B}{t / d+\bar{l} / d}\left[\frac{t}{d}+k\right]^{2} \text { where } k \text { depends on } B .
\end{align*}
$$

It is obvious that this equation can be written in the form :-

$$
\bar{p}=a\left(\frac{t}{d}+\frac{l}{d}\right)+b+\frac{c}{t / d+l d}
$$

Where a, b and c are independent of t / d. Over the range of t / d of practical importance the efect of the last term, which is negative, is small. \bar{p} is therefore approximately linear in $1 / d$, bat the curve bends uprards slightly as t / d increases. Fig. 30 shown \bar{p} plotted against t / d for the values of B of 200,300 and 400 and with $l / d=1.07$ (corresponding with a $1 \cdot 4$ c.r.b. projectile). It is noticeable that on the basis of this formula the mean pressure at low ralues of $t / d(<0.05$ approximately) is highest for the softest plate ($B=200$) and lowest for the bardest ($B=400$). Further, the hardest plate ($B=400$) begins to give a larger value for \vec{p} than the intermediate plate ($B=300$) ouly at the comparatively high value of $t / d \bumpeq 2 \cdot 3$. Remembering that formula (19) uses total energy of perforation, and that examination of fired plates shows that the extent of petalling or plagging is greatly dependent on hardness, it would be unjustifiable to assume that the racio of maximum load to \bar{p} is the same for hard and soft plates. A bigher ratio will clearly exist in a barder plate where the reaction is spread over a shorter distance than $t+l$ and a lower in softer plates where the bulge may give a total distance considerably in excess of $t+1$. The relation of peak pressure to mean pressure is so far a matter of speculation, but on the assumption that the factor is not greatly different from? (as would be the case in a triangular force-penetration curve) arhen the plate is

moderately tard ($B=300$), the value of 190 tons per square inch for the peak pressure wongld be estimated to correspond with a value of t / d of about 1.3 . The stress estimated directly from the Brinell number was 190 tons per square inch for a semi-ininite plate. The calculazon therefore ;ives :rother indication that the Brinell pressure underestinates the resistance of a thick plate. It is not to be expected that estimates of mā̄imum pressure as $\geq \bar{p}$, when \bar{p} is taken from these curves, will have much significance at higi ralues of t / d, (a) because formula (19) bas not been shown to apply to ralaes of $t_{i} d$ much in excess of 2 and ((b) because p max. will obriously tend to approach \bar{p} when t / d is large. Devertheless, in the rerion of $t, d \approx 1.0$ to $1 \cdot \bar{y}$, where maximum pressure mar be expected fairly near the mid-point of the penetration, the estimate is likely to be of the correct order. For this region it indicates maximum pressures from abont 120 tons per square inch to 210 tons per square inch.

3. Measurbucents of Plate Resistance in Static Punching Expemiments.

For closer estimates of the resistance of a plate to penetration it is necessary to consider more direct experimental measurements. The information on which most reliance can be placed is obtained from static experiments in which i. punch to the contour of an armour piercing shot is pressed through armour plate, the load and pemetration ceing measured throughout the process. The extent to nhich load-penetracion curves, lhus obtained under static conditions, represent the corresponding relation uncer dynamic conditions cannot be fully known until reliable measurements have been macie of the forces acting on a shot when tired through a plate. Attempts at such wezsurements have been made (see page 39), but the resulte are not yet suthiciently sucrstantiated to enable them to be used as a check against the static method. The stribing fact about the results of the latter method is that measurements of the total energy required for penetration under static conditions agree within the limits of exterimental error with measurements of the energy as obtained in firing trials. Alizough this agreement dues not preclude the possibility that difterences in the shape of the load fegetration curves may exist in the two cases, it gives some justification for the use of the static curves as morking hypotheses until further eridence becomes available.

8.1. Generai results estublished by static punching experintents.

The resultis of static punching experiments on armour plate and other steels, with discussions of their signitialuce in relation to armour plate penetration in general, are
 434 and 439. From the present aspect, namely that of the stresses induced in the projectile, the - terest is primarily in the peab loads found by this method. Before quc-ing and iscusoing these results some general facts established by the investigation are presented:-
(1). If ide punch is not lubricated a signiticant proportion of the work performed in static punching is expeuded in overcoming friction. This frictional Fect is relatively unimportant in the early stages of penetration but increases the maximum load by 10 per cent. to 45 per cent. and may increase the whal hurk by an amount up to 20 per cent. The lubricant used 5as a thin tiln of soft solder ($40 \mathrm{Sn}, 40 \mathrm{~Pb}, 20 \mathrm{Bi}$). The agreement between energies for complete perforation in static and firing trials refers to the E:atic results in which the lubricant was used. The inference is that friction Frobably plays only a small part in dynamic penetration. This deduction fannot be made with certainty: (a) because the ralue of the residual friction *hen the lubricant is used in whe static experiments is not known; and i) because the agreement between static and dynamic results, though highly ruygestive, does not prove identity in the processes. Nevertheless the anclusion is consistent with the following facts: (i). Firings. with lubricated phot (Refs. A38, 240) have failed to show any reduction in critical velocity l. f 1uibrication". (ii). Friction of steel on steel decreases as the speed of Le moving parts increases. The empirical formula $\mu=0.27\left(\frac{1+0.0044 V}{1+0.064 \bar{V}}\right)$ Eas been given (Ref. 440) for the rariation of the coefficient of friction μ in : - dry slidiag of steel on stecl where V is the relative velocity in metres

[^6]per second. (iii). Metalluryical examination of holes made in armour plate, by tiring, show the presence of a thim surface tilm of metal which has been raised to at least $60^{\circ} \mathrm{C}$. and which has probably acted as a lubricant during penetration. (Ref. it) (iv). Experiments designed to determine the loss of spin of a projectile atter its passage through armumr indicated that frictional effects were relatively small (Ref. 68).
(2). The qualitative behaviour of the plate is very similar in static and dynamic penetration for a given head shape and calibre. When back petalling occurs under firing conditions, back petals of identical type occur in the static case. Similarly plugging occurs in the same circumstances in the two cases. Limited revults on the $2-p r$. scale also show that plates which fail by discing under firing conditions, fail similarly under static test. The coronet form of a large number of front petals characteristic of " fired" holes is not reproduced in static trials, but with grod lubrication a ridge is raised which approximates to the beight and sluape of the boundary of the front petals. Another difference between the two cases exists in the volume of metal undergoing plastic strain in the two canes. (Ref. is). Although the volume affected is much larger in the static case it appears from calculation that the excess work thus expended is relatively small.
(3). The representation of the resistance as a constant pressure equivalent to that given by a Brinell number, for semi-infinite plates or for small penetrations into finite plates, is not valid. For conical punches up to shoulder penetration it is a good approximation. For ogival headed punches the pressure increases with increasing penetration. In any case the equivalence would not apply over a large part of the penetration, since bulging of the rear face causes a departure from semi infinite conditions when the point of the punch reaches a distance of the order of $\frac{1}{2}$ calibre from the rear face.
(4). The position of maximum load raries according to the shape of the punch. For sharp punches it occurs when the point breaks through the rear bulge. This condition corresponds with petalling fallure and penetration is not complete until the shoulder has emerged from the bulge. For blunt punches, which cause plugging, maximum resistance occurs very shortly before the plug shears. Shearing commonly occurs in the range investigated. i.e., $0 \cdot \overline{6}<t / d<2 \cdot 0$, when the point of the punch is a little over half-pray through the plate. Variation of maximum load for a given head shape and plate quality is approsimately linear with plate thickness.
(5). A small difference in the nork performed at different stages, between the static and dynamic cases, is found by comparisons of the energies required for partial penetrations in the tro cases. These comparisons show that more energy is used in the dynamic case in the early stages and less in the later. The differences are not large but are probably berond the range of experimental error and thus indicate the existence of a dynamic term in the resistance*.
(6). As in firing trials, scale effect is found to be small. Nevertheless it was observable and agreed as regards total work. and mode of failure, with the results found in the N.P.L. firing trials, when the plates used in these trials were penetrated statically.

3.2. Deiailed results of static punching experiments.

Since :he frictional resistance to an unlubricated punch has been found to account for a significant proportion of the energy absorbed in perforation, the numerical resalts quoted tare have been taken only from the observations on lubricated punches. A summary of :hese results is given in Table 3. The maximum stresses to which the projectile is subjec:ed are largely governed by the maximam load, although the rate at phich this maximan is reached must have a secondary effect on the stress distribution. In Table 3, therefore, the values of the maximum load are quoted. The close agreement in nearly

[^7]dll cuses :rntween energies for perforation in the static and dynamic cases is shown in the culumns 12 which the critical velocity, deduced from the static energy, is compared with the criticii relocity determined by firing trials. From the olserved maximum load h, a stress \dot{F} is obtained by dividing by the cross-sectional area of a body of the projectile ; $\pi-d^{2}(4)$. This value is quoted in the table, but it is not necessarily the value of any stress existing in the shot during dynamic penetration. Neglecting any fundamental differences in the load-penetration curve which may exist between the static and dynamic cases, and also the stress gradient in the latter case, maximum load may be reached before the shoulder of the shot has penetrated the front surface of the plate. In these conditions, which will arise when the plate is thin or the head of the projectile is long, the load will be distributed over a smaller area and the stress at the head will be greater than the quoted value. Presentation of the results in the form of stresses which the load mond cause if acting over the full crose-section of the projectile is adopted for two reasors :-
(ai). It illustrates that the dependence of the stress on scale is very small.
(b). Because this dependence is small it is convenient in applications to calculate from the stress rather than from a load which varies according to the scale.

Table 8.
Fiatic observations referring to lubricated punches, with comparisons of calculated and observed critical velocities.
$F=$ Уaximum load (tons). $\quad P=\frac{4 F}{\pi d^{2}}$ (tons per square inch).
in most cases the quoted figures are means from several observations.

Head ahape	d	t/d	B.H.N.	F	P	P	Critical velocity	
						B	Static	Firing
1.4 c.r.b.	ins. 0.285	0.787	$\underset{373}{\operatorname{kgs} / \mathrm{sq} . \mathrm{mm} .}$	$\underset{8 \cdot 04}{\text { tons }}$	tons;sq. in. 141.7	0.380	$\begin{gathered} \text { f.s. } \\ 1523 \end{gathered}$	$\begin{aligned} & \text { f.8. } \\ & 1528 \end{aligned}$
*	"	0.825	318	$8 \cdot 60$	134.8	0.424	1548	1552
\bullet	"	0.867	307	8.73	136.9	0.446	N.R.	N.R.
"	"	0.877	109	3.98	$62 \cdot 4$	0.572	1115**	1225
"	"	1.024	263	8.02	141.4	0.538	1702	1693
"	"	1.028	352	10.88	170-3	0.483	1818	1779
"	"	1.046	302	$9 \cdot 89$	155.0	0.513	1761	1757
"	"	1.344	260	10.95	171.7	0.660	2034	2015
"	"	1.491	302	12.13	$190 \cdot 2$	0.630	2237	2180
"	"	1.753	109	$6 \cdot 17$	96.7	0.887	1745	1778
\cdots	"	1.896	296	13.54	212.3	0.717	2680	2645
"	"	2-011	323	14.55	228.1	0.706	2696	2620
"	"	$2 \cdot 102$	112	8.22	128.9	$1 \cdot 151$	N.R.	N.R.
1.4 c.r.in	0.285	2.632	109	7.04	110.4	$1-013$	2201	2345
"	"	3.505	109	8.34	130.7	1-199	2750	2816
"	0-785	0.721	295	$51-03$	$105 \cdot 4$	0.357	1391	1379
n	"	$1-042$	288	69.60	143.8	$0-499$	1675	1683
n	"	1.419	274	79.71	164.7	0.601	1982	2015
n	"	I 419	288	84.73	$175 \cdot 1$	0.612	2035	2038
"	"	1.426	291	84.56	174.7	$0 \cdot 600$	2043	2051
-	1:565	0.714	271	180.9	94.0	0.347	1248	1314

[^8]Table 3 (contd.)

Heen ahepo	d	$4 / d$	B.H.N.	\boldsymbol{F}	P	\boldsymbol{P}	Critical melocity	
						B	Static	Firing
I 4 er.h.	$\frac{\text { ins }}{1.585}$	0-715	$\text { (1sge/eq.mm } 289$	$\begin{aligned} & \text { tong } \\ & 187.5 \end{aligned}$	$\begin{gathered} \text { tons/isq. in. } \\ 102.7 \end{gathered}$	0.355	18. ${ }_{1291}$	$\frac{f .8}{1311}$
-	*	0-760	262	200-0	- 1040	0.397	1218	1186
-	"	0-897	248	232.2	120-7	$0-487$	1408	1440
,	1800	0.944	257	248.5	128.2	$0-400$	1445	1440
,	n	$0-973$	246	241-5	125.6	0.511	1481	1453
-	\cdots	$0-978$	281	285.2	138-8	0.487	1471	1440
-	n	1.011	284	254.8	132.5	0.487	1604	1591
-	"	1.248	273	$276 \cdot 4$	143.7	0.528	- 1747	1700
-	\cdots	1.358	292	32.8	$167 \cdot 3$	0.573	1842	1947
-	n	1.522	290	346-4	180.1	0.655	2044	2063
-	"	2-037	302	424.4	220.6	0.730	N.R.	N.R.
40 erh.	0-250	0-788	342	-5.58	113.7	0.332	1454	1418
-	-	0880	212	4-23	86.2	0.407	1312	1350
,	"	0-988	307	6.85	119.2	0.388	1815	1557
*	\cdots	1.532	260	7.02	1430	$0-650$	1884	1982
-	\cdots	1.564	112	4.76	07-0	0.866	1611	1572
-	n	1.568	207	7.54	163.6	0.742	1872	1882
-	"	2.280	217	8.30	170-9	0.788	2232	2289
-	$\boldsymbol{\square}$	2-286	321	11.82	240-8	0.750	2608	2584
\checkmark	-	2-404	112	6.82	118.8	1.050	2013	1888
0-6-r.h.	1.585	1-042	269	313	163	0.605	-	-
10%	"	"	"	277	144	0.535	-	-
20	"	"	"	265	138	0.512	-	-
$0-6$.	"	1.269	273	323	188	$0-15$	-	-
10 ,	"	n	"	308	160	0.686	-	-
20.	n	"	"	276	144	0.526	-	-
$0-6$.	n	1.618	280	375	195	$0-672$	-	-
10 ,	n	-	\cdots	358	185	0.638	-	-

4. Dependejice of Static Resistance on Plate Hardness and Thlceness.

If maximom load were entirely determined by the thickness t of the plate, the dianseter d of the punch, and a single stress characteristic of the plate quality, and if furtior the Brinell number B were a direct measure of this characteristic stress, then it is exsily seen from dimensional arguments that P / B would be a function of t / d only. The ralues of $\frac{P}{B}$ have therefore been tabulated and a plot of P / B against t / d is shown in Fige. 31 and 32.

$36 A$

In Fig. 31, which refers to a punch of 4 c.r.h., $0 \cdot 250$ inch diameter, the Brinell numbers of the plate concerned are given against each plorted point. It is clear from this diagram that P / B is not a function of t / d only. The points obtained from observation on mild steel (B.H.N. 112) lie well above those for harder plates. A similar result is observable in Fig. 32. To aroid confusion the Brinell numbers are given in this diagram only for the mild steel results, but it is again clear that for a given value of t / d the corresponding ralue of P ' B is greater for mild steel than tor the considerably harder armour steels to Which the other results refer. It is further apparent that although there is a tendency for the points referring to armour plate to group about a common curre it rould only be an approximation, even in these cases, to regard P / B as determined entirely by t / \dot{u}. Several possibilities arise from these observations:-
(a). It may still be true that P is a function only of t / d and some single stress f characteristic of plate resistance, which would again imply that P / f is a function of t / d but f is not proportional to B. In this case, if B is a function of f only, it should be possible to find a function $F(B)$ of B such that $P / F(B)$ ploted against t / d would give a uniform curve.
(b). P may depend not only on the stress given by the brinell rading B lut also on some additional stress characteristic of the plate. If the additional stress is capable of variation indejendently of B, no method of plotting will give the regular carse required. since the plate properties would be insufticiently specified.
(c). t and d may not be the only distances concerned in the determination of P. For example, the bulge height may enter and way vary with the quality of the plate [this possibility is similar to those of (a) or (b) since beiglit ratio can depend on a stress only if the co-etticients in the relation have the dimensions of a stress], or the dimensions concerned in the plate structure may influence its behaviour.

Case (b) namely, the possibility that some property of the plate in addition to its ilithness and hardness enters into the determination of the maximmm load, is almost certainly true. For example, the waximun resistance might depend on the extent of shear deformation which can occur between yield and fracture. (See Chapter $1, \mathrm{pl} .8$ and 9.) At best. the Brinell number can give only an average meande of the stress strain curve, and this arerage refers to only une type of deformation. In the present comection the possibility that some other "strength" constants intluence the results camot be analysed and the working assumption must be that unspecided plate qualities bare only a secondary effect on the phenomena. This assumption is emuivalent to supposing that if the resnits were ploted in three dimensions n ith $P, l\}$, and t / d as ordinates ther mould all fall on some unique surface. Alternatively, P plotted against $t ; d$ or B when the other qualits is constant would yield a unipue curve. The experimental points do not provide sufficiem results at constant t / d or constant B to enable a sutisfactory analysis to be made on these lines. A fairly large number of results are aruilable in the region $t / d \xlongequal{\sim}=1$ and it if ibus possible, as in approximation. to correct them to $t / d=1$, the correction being obrained from the general trend of the results shown, say, in Fig. 32. Table 4 gires the resul: of such a calculation, but beyond showing that the mild steel results fall well outside the group for armour phate it gives no indication of the precise relation between P and B. Another presentation of the results is given in Fig. 33 in which P has been plotted against t / d and the Brinell number associated nitb each result has been given against the plotted point. Although this diagram provides evidence that P tends to increase with B it does not suggest any definite contours for constant B such as would be expected from the assumption $P=f(t / d, B)$. In riew of these obserrations it is not profitable to attempt to obrain an approximate analytical relation betreen the rariables. From theretical considerations it is to be expected that when t / d is large the ralue of P will approximate to a constant value of $k f_{y}$ where k is about $4 \cdot 6$ and f_{ν} is the yield stress material (see p. 41). It is also obrious that P is zero when $t / d=0$. A function such as $P=k t, \quad\left(1-e^{-a t i d}\right)$ where a is a function of head shape and Brinell number wight give an approximate representation, but, in riew of the scatter of the results there is no adrantage in presenting them in this form. Comparison of Figs. 32 and 33, however, shoris that some gain is made by plotting P / B insteald of P against t / d. The curve shown in Fig. 'sis is dramn freely π-ith no attempt to fit to an equation. It will be seen that as far as armour plate is concerned the error introduced by using this curve would never be large.

Table 4.

Estimated values of P / B at $t / d=1$, obtained by correcting values obsersed in the neighbourhood of $t / d=1$.

d	t/d	$\begin{gathered} \delta y \\ 0 \cdot 38(1-t / d) \end{gathered}$	$y=\frac{P}{B}$	$\stackrel{Y}{y}+\dot{\delta} y$	B
0-285	0-825	0-063	0.422	0.485	321
	0-828	0.082	0.450	0-512	315
	$1-025$	-0.009	$0-543$	0-534	264
	$1-011$	-0-004	0.552	0-648	281
	1.042	-0015	0.347	$0-532$	300
	1046	-0-017	0.508	0-489	303
	1.032	-0-012	$0-483$	0-471	357
	1032	-0-012	0.470	0.458	346
	1.035	-0-013	0.638	0.523	461
	1032	-0-012	0.518	0.506	462
0.785	1.043	-0-015	$0 \cdot 504$	0.489	285
	1.041	-0-015	0.495	0.480	291
1.565	$1-013$	-0.005	0.471	0.488	283
	$1-009$	-0.003	0.463	0-460	285
	1.042	-0-015	0.532	0.517	269
	0.944	0-020	0.495	0-515	257
	$0-887$	$0-037$	0.483	0-520	248
	1.065	-0.023	0.534	0-511	316
	1.068	-0.024	0.552	0.528	316
	1.081	-0.022	0-503	0.481	311
	0-932	0.024	0.458	$0 \cdot 481$	247
	0.933	0.024	$0-433$	0-457	257
0.285	0.877	0.044	$0 \cdot 585$	0.629	109
	0-877	0-044	0-558	0.602	109

Tıe curve of Fig. 32 will give a fairly good estimate of the maximum resistance enco-ntered by a punch of 1.4 c.r.h. in the range $0.7<t / d<2 \cdot 0$. Despite the scatter of the Foints the diagram shows some evidence of a swall "scale effect" in the direction whica would be expected from the similar effect in energies for perforation. Maximum presinres tend to decrease as calibre increases. This tendency is illustrated in Fig. 33, in π ich the points corresponding with the plates uned in the N.P.L. trials are shomin in hearier printing.
Alhough the tendencs can be seen, the variations apparent in Fig. 32 show that no usef-i purpose would be served by an attempt to express the relation by different curves for \quad ach scale. Extrapolation of the curve beyond the range $0 \cdot 7<t / d<2 \cdot 0$ is probably justíable, if it is guided by the following considerations:-
i). There may be a discontinaitr in the slope of the curre in the region $t / d=0.4$ or 0.5 (see Chapter 2 , page 2 6) but there is no reason to suppose that any large carvature existe from the origin to this ralue.
:i). Since increase of thickness wust increase maximum load except possibly at great thicknesses, the slope is always positive.

SHOWN AGAINST PLOTTED POINTS.
VARIOUS PUNCH DIAMETERS. ALL 1.4 C.R.H.

$35-\mathrm{n}$
(iii. The limiting ralue of the pressure, probably approached rery closely at $t / d \simeq \tilde{5}$, is likely to be about $p \simeq 4.6 f_{v}{ }^{*}$
A ter:ative curve for hardness in the region of that of mild steel ($R \ldots 100$) is included. Information on the effects of rariation in head shape is very scanty, bat the available results referring to head shapes other than 14 and ± 0 c.r.h. are ploted in Fig. 34. The afoposimate curres for 1.4 and $4 \cdot 0$ c.r.h. are repeated in this diagram. In the small range of thicknesses in which the additional results lie (approximately $1.0<t:<1.5$) the departures of the results for 0.6 .1 .0 and 2.0 c.r.h. from those for 1.4 c.r.h. are not large. Nerertheless. they indicate. as is, to be expected, that a blunter head gives a higher maximum pressure. The differences are likely to be greater when $0<t / d<1$ and smaller when $t / d>1.5$.

The ralues of \bar{p} / B as calculated from the N.P.L. formula bave been included in Fig. 34. It is apparent that the approximate estimate of $2 \bar{p}$ for maximum stress obtained from the formola mas not greatly in error for the middle hardness ($B=300$) but that, as was to be expected, the estimate is not good for the other hardnesses.

5. Dfnamic Meascreaent of Plate Resistance.

The Experimental evidence on the maguitude of the forces to which a projectile is subjected on penetrating armour plate is almost entirely contined to the static puaching resulte which have just been described. Efforts to deduce the retardation (and bence the retarding force) by obtaining space-time records of a shot in the course of normal pentration of armour have been made in England, America and Germany. In the latter eountry the experimental method used nas that of multiple spark photography giring $i t$ most a series of $2 t$ associated values of space and time. This method had abreadr been tried in England (Ref. (ii) but discontinued because of its insufticient accurars. The German results (Ref. 441) are also insuliciently accurate to gire more than the orcier of the force which, as shown by lig. 30 is readily calculable from critical energ.. The difficulties associated with the measurement arise primarily from the extreme brevity of the period during which the retardation acts. The order of this time for a projectile of diameter d inches and a head length equal to its culibre when attacking a onc calibre plate may be taken at $d /$ te seconds, where \bar{i} is the mean velocity in f.s. orer the trarel of $2 l$ inches. At a mean relocitr of 1000 f.s. the total time for a 1 -inch projectie is thus of the order $\frac{1}{6}$ millisecond. Within this period a space-time curre is requiré of sufficient accuracy to give a representation. on at tine basis, of the second derirat:re. The experimental arrangement tirst used by the Saval Research Laboratory, Washizzcon (Refs. A12a, 347, 348) is shown in Fig. $3 \overline{3}$.

The : anciple of the method was to obtain a record on moving film of the motion of the base ot the projectile as it uncorered a narrow slit, which was intensely illuminated by a seark of sufficiently long duration to curer the whole time interral concerned. The tazet plate was so positioned relative to the slit that the motion recorded rould occur maile the plate mas being penetrated. The image motion and tha motion being perpencicular, the slope of the trace at any point was proportional to the instantaneous relocity of the base of the projertile, and hence the rate of change of the slope ware the retarda:on of the base. The possibility of olitaining a measure of this rate of change depende on obtaining a very high film siped. By using ann air turbine as illustrated in Fig. 3 . the film being monnted on the inside of the cylindrical portion of the turbine,
 diamett: but capable of a rotational sueed of about $\mathbf{Z} 400$ revolutions per second.

From analysis of records taken with this apparatus for impacts of $0 \cdot 2(65 \mathrm{~J}$ inch diamets: projectiles against armon steel (S.T.S.) and mild steel the results given in Table \bar{E} tere obtained. (Results, not reproduced here, were also obtained in Ref. 348 for face hariened plate and showed a double peak in the force curve).

- A clue, derived from firing trials, showing estimated nean pressure for ralues of t ! d from 3 to 8 , and refer.ag to plate in the range 230 to 280 B.H.N. is given in Ref. 444 . It is roughly cousistent as an extension of the appropriate curre of Fig. 30, but shows mean pressure continuing to increase slightly with $t: c$ ip to $t / d=8$.

Table 5.

P-ojectilc dimensions.-Diameter $0.205 \mathrm{inch} \pm 0.0001$ inch; length 1.040 inch ± 0.005 - inci: ogival radius 0.910 inch.

Tirget properties:-

(a). S.T.S. 2 ins. $\times 2$ ins. $\times \frac{1}{4}$ in. Hard. ness 240 Brinell; ultimate tensile strength $125,000 \mathrm{lb}$. per square inch.

S.T.8. Armour		
Striting velowty	$\begin{aligned} & \text { Bemaining } \\ & \text { velocity } \end{aligned}$	$\begin{gathered} \text { Marimam } \\ \text { force } \end{gathered}$
$\underset{1543}{\text { f.g }}$	$\underset{78.5}{\substack{\text { f.s. }}}$	$\begin{aligned} & \mathrm{lb} . \mathrm{wt} \\ & 13,430 \end{aligned}$
1440	490	14,820
1316	0	14,590
1367	0	14,500

(b). Mild steel 2 ins. $\times 2$ ins. $\times \frac{1}{4}$ in. Hardness 103 Brinell; ultimate tensile strength $50,000 \mathrm{lb}$ per square inch.

Mild steal		
Striking velocity	Remaining velocity	$\underset{\text { force }}{\text { Maximum }}$
$\begin{gathered} 1222 \\ \hline 120 \end{gathered}$	$\begin{gathered} f, 8 \\ 478 \end{gathered}$	$\mathrm{lb}_{9,440}^{w t}$
1127	349	8,560
1108	0	8.560

Tie mean igures obtained from these results are:-

Size the ogive used was $3 \cdot 43$ c.r.h., these results are not directls comparable nith any : $:$ those obtained by static punching. The curres of Fig. 34 or Fig. 31 wonld forecast lowe values. It is not, honever, to be concluded on these results alone that there is a dyne nic effect increasing the maximun forces found by statir experiments. It has been
 fectit rigid shot leads to signiticant errors in this uethod of estimating the retarding forc:- Simple calculation shows that the time duration of the force acting on the projectije is only a fairly small maltiple of its period of longitudinal vibration. Such ribrations, which have been recorded after implact (Ref. 365) have, therefore. a considerable effec: on the motion of the base in the period under measurement. The head reaction is propsrated elastically to the base and its motion is the resultant of a series of wares refleod up and down the sbot. Nlowance was made for this effect in the later report (Ref. 34) where results are given for S.T.S. armour, mild steel and 24 S.T. aluminium. Thetresults are giren in Table 6.

Table 6.
Projectile diameter, $d=0 \cdot 169 \mathrm{j}$ inch. Ogive shape, $2 \cdot 5$ c.r.h.

Maxerial		S.T.S. Armour $B=268$				Mild steel $B=99$		24 S.T. Aluminium	
Thickusa 6 . (inchan:	0.500	0.360	0-250	0.1875	0.500	0.350	0.250	0.1875	0.281
Max. i:cce (lb.)	29,800	20,600	14,400	10,400	12,600	11,200	8,600	6,300	8,000
Max. pressure p, (tons nch')	178.4	161.2	112.7	81.4	98.8	87.7	67.3	$49 \cdot 3$	82.6
1/d	1.855	1.336	0.928	0.696	1.855	1.299	0.928	0.698	-
p / B	0-671	0.606	0.424	0.308	0-998	0.888	0.680	0.498	-

$40-6$

An essemtially similar method has been used by the Road Research Laboratory (Refs. $23.235,406$ on the $2-\mathrm{pr}$. scale. Results are araliable for only one plate, whose thickness was 41 mm . End hardness 293 Brinell. The peak retardation found when allowance π : s miade for e- stic motion mas approximately 8.10^{c} f.s. ${ }^{2}$ Assuming a shot mass of 2.3 l lb ., this figure \bar{w} ould give $m / B=0.46 i$ at $t^{\prime} d=1 \cdot 031$. These latter values correspond fairly closely with the static results shown in Fig. 32. The American results give pressures wioh are sonewhat higher than those of the nearest bead shape ased in the static tests. The accuracr of the experimental results needs to be extremely high in order to give eren a rough estizate of the variation of the force on the projectile. While, tberefore, the results of this experimental terhnique mar be regarded as confirming that there is no change in the order of the peak force between static and dynamic penetrations, it cannot at present concluded that the swall difierences found either in the type of force-

Ither metiods of letermining the forces exerted during impact have been attempted. The surface markines on sbot which rehounded from a normal target were analysed in Ref. ©5. and an estimate of the retardation obtained on the assumptions that the slin remained corstant and that the marks were colused by witerial which remained in a plane parallel to tie plate surface. Estimates have also been made br housing a free indenter in contact with a copper " target" within a shell and measuring the depth of indentation cansed rhen the shell penetrated an armour plate. An extention of this medhul is described in Ref. 412. Several steel balls were used as indenters and were located at ratious inital distances from the copper "target." Thes thus struck the copper at mations time after impact and at rarious velocities which could be estimated from the denths of intentation. From these velocities a series of mean accelerations mas deduced. The difficults of interpretation in all these experimental methods are considerable and, in consequen e. they bave so far done no more thin to confirm the probable order of the leak force is rolved.

6. Theoretical Wure on the Resintanie to Penetration.

15.1. Pressui: rcyuired to expand a hole in an infinite madium.

The experimental eridence on the force to which the projectile is subjected has now ben considerod and it remains to examine the investimations nhich have been made from a theoretical aspect. An estimate of the limiting preswine which would be reached in an infinitely hick medimm bas been given in Ref. A. 20 and extended in Ref. 343 . In the former case n analysis rus made of the nork necesemry to expand a cylindrical hole in a plastic =edium and in the latter the method was extended to a spherical hole. If strain harde ing is neglected the firw and semond methois gire revectively the following approximate :elations (see Chapter $\because, p, 20$) : -

$$
\text { (i). } p=3.6 f_{v} \quad \text { (ii). } p=4.3 f_{v}
$$

where f_{v} is : ae gield strength of the material. Strain hardening mill have the affect of inceasing tim value of f_{ν}. Uising results obtained for large stritins onder high pressure (B-fs. A.42.: is) it is estimated that the ralue of p will be increased br about \mathcal{G} per cent. for armour reels and 30 per cent. for mild steel. Hence, for a fairly blunt punch penetrating armosir the estimuted order of the pressure is aboat

$$
p=4.6 f_{v}
$$

\mathcal{L} the ratio of Brinell number B to yield strength f_{y} is k

$$
p / B=4 \cdot 6 / k
$$

or. since $B \perp 4.7 f_{u}$ for armour steels, and f_{s} slightly exceeds f_{y}.

$$
p / B \simeq 0 \cdot 9
$$

This is the cimiting ratio of p / B which wonld be experted for high values of t / d. The curre of Fis. \mathbf{j} is consistent with a linit of about this valle. In the cuse of mild steed the approxilizte relation between p and f_{v} will be

$$
p \simeq 5 f_{v} \text { or } p / B=5 / k
$$

Since k is $: n$ the neighboarhood of $\because \cdot J$ for mild steel the limiting value for p / B in this cane is

$$
p / B \simeq 2
$$

This resui: is again consistent with Fig. 32.
Although je static punching results are consistent with the existence of limiting pressures of siont the abore value, the range of t / d for π hich obserrations on lubricated panches are railable is not sufficiently large to give direct confrmation of the existence
and manitude of the limit. Experiments un punching in copper, both hardened and anneallea, are described in Rer. thi in nhich a uncussiou is also given or the sighincalle naroness tests. Contirmation is ubtained of the existence of a limit or the predicted margutude und it is found that a peutration depth of about 5 dianeters is necessary - verore the minit is reached. It is, however, ponted out that independently ot stram garvening the Brinell or other indentation haruness is likely to be less than tae pressure at getat aepths because the construint on the material is less near the surface. Flow mio a hp can, therefore, occur and this provides a retief which is not available deep in the material. This effect has some importance in any attempts to deduce the value of the harcness trom the field strength of the waterial, but does not attect the arguments given anore in which it is discounted by the use ot an empirical value for k.

6.2. Analyser involving the theory of elusticity.

Uner estimates of the resistance and state of stress during penetration have been made by tie use of the metnods of the cheory of elasticity. In Ref. $\mathfrak{b i t}$ an upper limit is found to tie resistance by using the von Mises plasticity condition and considering the resolved fores on conical surfaces axial with the panch. The limits thus found increase as penetration increases and, therefore, give no information on any constant resistance at great depths. The same method applied to finite plates gires results of the order of the static observations. In Refs. 88 and 121 the analytical problem is treated entirely on the basis of elasticity theory. Although the solution is rigorous for the very complex problem of elastic indentation of a solid by a body of revolution its application as an approsimation to penetration problews requires an empirical estimate for the appropriare change in " modulus of elasticity" applicable to plastic changes. It does not, thereiore, provide an independent estimate for resistance. An investigation of the distr: 0 ution of stress in a semi-infinite elastic body sinbjected to a uniform pressure over an internal circular area is given in Ref. 3i3. The practical application of this analysis is concerned with discing. Again no direct estimate of plate resistance is provided, but the asmmption of a pressure equal to 4 or \bar{j} tines the vield strength gives consistent falues for the stresses under which back failure occurs. The case of redge indentation into a plastic solid, reducing the problem to two dimensions instead of three. has been considered in Ref. 408. The predicted type of flow was observed when the deformation was made on a lead block scribed with a grid of squares.

7. Modifications to the Forces Acting on tee l'rojectile Due to Driamic Effects.

Theoretical investigations may be regarded as giving justitication for assuming that the static curves shown in Fig. $3: 3$ will tend to approach a constant pressure at $t / d=\frac{1}{2}$ or 5 and they predict a value for this pressure. They also give an explanation in teme of strain hardeniug of the divergence of the values of p / B for mild steel comparej with armour steel. No very close estimates have yet been giren from theoretical considerations of the maximum resistance oftered by a finite plate although the total work can be estimated by the methods discussed in chapter 2. Nevertheless, some indications can be profided from theory of the cunditions in which the force is likely to exceed that measured by static methods.

7.1. Sinetic energy of the target.

Sucue increase in resistance in dynamic penetration compared with static might be expected from the necessity in the former case to accelerate the material away from the surfare of the adrancing projectile. The overall increase in resistance from this cause is known to be small from the fart that, at least up to velocities of about 0.000 f.s., the energy required to perforate a plate is not greatly dependent on relocity (see footnote pare 34) and that it agreen with the ntatic work. A minimum value of the kinetic enersy imparted to the plate is easily calculable frou considerations of momentum. If the mass of the projectile is \mathcal{M}. and of the plate $k M$ and if the projectile approaches the plate with relocity ε_{0} and leaves it with velocity r, the centre of gravity of the plate must nave acquired a velocity $(1 / k)\left(r_{0}-r_{1}\right)$. The ratio of the energy of translation E_{p} of the plate to the energy E lost by the projectile is thus giren by

$$
\begin{equation*}
\frac{E_{p}}{E}=\frac{1}{k}\left(\frac{v_{0}-v_{1}}{v_{0}^{2}-v_{1}^{2}}\right)^{2}=\frac{1}{k}\left(\frac{v_{0}-v_{1}}{v_{0}+v_{1}}\right) \quad \cdots \tag{20}
\end{equation*}
$$

For relocities of attack near the critical velocity, r, will be small compared with v_{0} and the term in brackets will be near unity. Resarding the target as a disc N times the
diamener of the projectile, and the latter as equivalent in volume to a cylinder of diameier d and length $3 d$ the value of k is given by

$$
k=N^{2} / 3 \cdot t / d
$$

In the case of a one calibre plate for example the ratio E_{p} / E could thus be made as great as JJer cent. only by making the plate less than eight calibres in dianeter. The calcuistion assumes a treely supported target and the effect of constraints on an actual target will clearly be to increase the effectire mass and so to decrease the ratio. It is not, Eowever, true that the energy imparted to the plate continues to decrease as its size increases. Equation (20) is correct for translational energy but neglects energy of vibration, and the distribution of energy between vibration and translation depends on the size of the plate. It is obvious that the energy given to the target cannot depend on ite size if the time for transmission of waves from the impact position to the boundaries of the plate and back again is greater than the duration of impact. If the velocity of wave propagation is c and the duration of impact T, the energy given to the plate most thas te at least as great as the energy of translation given to a plate of radius approximateiy $c T / 2$. For head length of one calibre T may be taken approximately as $(t+d) \frac{2}{o_{0}+\sigma_{1}}$ leading to

$$
\frac{E_{p}}{E}>\frac{3}{4} \frac{v_{0}^{2}-v_{1}^{2}}{c^{2}} \cdot \frac{1}{t / d(1+t / d)^{2}}
$$

If now $\tau_{0}^{2}-v_{1}^{2}$ is taken as t^{2}, the square of the critical velocity, and the formula $\frac{m v^{2}}{d^{3}}=$ $C\left(\frac{t}{d}\right)^{-43}$ (10 of Chapter 2) is used, the inequality becomes

$$
\frac{E_{p}}{E}>\frac{3}{4} \frac{d^{3}}{m} \frac{C}{c^{2}} \frac{(t / d)^{.43}}{(1+t / d)^{2}}
$$

With :ae approximations $\frac{3}{4} \frac{d^{3}}{m}=1 \because 2, C^{\prime}=10^{\circ}, c=10,000$ f.s. the formula becomes fillally

$$
\frac{E_{p}}{E}>\frac{1 \cdot 2}{100} .(t / d)^{.48}(1+t / d)^{-2}
$$

A one calibre plate of large area relative to the cross section of the projectile this absorts at least 0.3 per cent. of the energy as kinetic energy. Its total binetic energy including the vibrational component. omitted from this calculation, may be moch larger. An attempt to calculate the total energy is given in Ref. 103. By approximating for the elasticity of the plate the velocity \dot{C} of the centre of a large thin plate under the action of a normal force F is obtained as

$$
\begin{aligned}
\dot{D} & =a F \\
\text { where } a & =\frac{1}{4 t^{2} p^{c}}
\end{aligned}
$$

This reiation leads to the following value for the ratio E_{p} / E where E_{p} is now the total kinetic energy communicated to the plate:-

$$
\frac{E_{p}}{E}=2 a m \frac{\int F^{2} d t}{\left(\int \overline{F d t}\right)^{2}}
$$

Making the further approxination $\int \frac{F^{2} d t}{\left(\int d t\right)^{2}}=\frac{1}{\tau}$ abere τ is the duration of itulact

$$
\frac{E_{\nu}}{E}=\frac{3 \pi}{8} \cdot \frac{d}{c \tau} \cdot\left(\frac{d}{t}\right)^{2}
$$

For a ne calibre plate. with the same assumptions as above,

$$
\tau \simeq \frac{4 d}{v_{0}+v_{1}} \text { giving } \frac{E_{p}}{E}=\frac{3 \pi}{32} \cdot \frac{v_{0}+c_{1}}{c}
$$

where. with the numerical ralues assumed $\left[v=\sqrt{\left(10^{6} \cdot 1 \cdot 6\right)} ; c=10^{4}\right]$, the ratio at the critica: velocity becomes

$$
\frac{E_{p}}{E}=\frac{3 \pi}{32} \frac{\sqrt{1 \cdot 6}}{10} \simeq \cdot 037
$$

(In Ref. 163, in which the method of analysis is given, an estimate of 18 per cent. is obtained for the energy of the plate. This figure is obtained by assuming a critical relocity ai 3000 f.s. for a one calibre plate, the force being assumed to act orer the plate thickness only). The ratio obtained abure corresponds to a plate energy of about 4 per cent. of :ie total and is consistent with the estimate of $\overline{5}$ per cent. for a plate eight calibres in diameter. In a plate as small as this the waves will bave made about four double jozrneys to the boundary and back to the centre before the impact is over. The energy is therefore, likely to have been very largely conserted into energy of translation and the proportion remaining as vibrational energy will be relatively small. The reaction jetween the plate and the projectile will, of course, be modificd by the plate motion, bat the rariation will be small in plates as large as, or larger, than eight calibres in diameter.

It thereiore appears that for plate thicknesses in the region of one calibre the kinetic energy ot the plate is not likely to exceed about 5 per cent. of the total. Higher proportions nay exist in conditions in which the duration of impact is very small, i.e., for considerably thinner plates, or with blunt headed projectiles, or with plates which plug shortly aiter impact occurs. Analyses of the elastic motion of thin plates from which estimates corresponding with these conditions would be calculable are given in Befs. 102, 139 and 339.

The exirgy abstracted from the projectile when attack is made at a velocity bigher than the sritical relocity usually exceeds the critical energy. This fact is sometimes attributes to the energy given to the plug. It is true that the plug is ejected with a velocity st least as great as the remaining velocity of the projectile and that the latter must hare supplied the corresponding kinetic energy. As a very rourh approximation it is thus possible to attribute the deriation from unity of the coefficient s ($p \mathrm{p} .19$ and $\ddot{3}$) to pige energy. Since, horever, the plug musi have acquired some velocity to enable the shear fracture strain to be reached, part of this energy is expended whether or not the process extends to fractare. Further, the determination of s must depend on the total energy giren to the plate, both vibrational and translational energy being included. Even in the absence of plug formation these effects are reflected in the values of s differing from unity found for petalling plates. From these considerations it is apparent that it is only in a crude way that s can be regarded as calculable from plug energy.

A conrention has arisen of expressing trial results, on occasion, in terms of a "Poncelt: coefficient" $\%$ (see Chapter 2). It would be possible formally to give the energy dse to dynamic effects in terms of γ. The lack of any physical justification for the Poncetet form of the resistance in steel would, however, present such calculations from harng any signiticance. The only conditions in which a formula for the resistance of a type $R=k \cdot 1\left(1+\frac{1}{3} \gamma \rho \frac{u^{2}}{p_{0}}\right)$ can be given a fairly precise physical meaning occur wtin the size of the hole made in the target increases with velocity. Such conditions arise in steel ouly at very high relocities of attack and, as a normal consequence, czainst thick targets. The increase in resistance then occurring through the high velocity is not primarily a resolt of energy retained in the target as Einetic energy but as plsatic deformation in excess of that which would occur at lower velocities. The conditions in which such behariour nill occur are considered in the next section.

7.2. Carsation.

The hes i shape may be such that the radial relocitr imparted to the target material causes it to movi anay from the projectile axis at al rate which is too high to allow it to be overiaken by the adrancing head. Such behaviour is known as "caritation," and its occur--ence is ceriously conditioned br the shape of the head. A discussion of the effect is given in Refs. $\{: 2$, 409. The qualitative effects to be expected are fairly obvious. In the case of a conic: bead, for example, the flor of the target waterial at whoulder entry must bave a radial emponent, and eren at moderate relocities a displatement must orcur in excess of that from which elastic recovery is possible. For ogival heads which meet the parallel body tansentially the existence of the effect will depend on the relority in relation to the gead currsure. Mith a giren head shape there nill be a critical velocity below which :10 caritaron occurs. As this velocitr is exceeded the excess diameter of the hole over :he projer-ile diameter will grow, and the region of meparation of the target material from the rojectile surface will shift towards the nose. Since the projectile relority Jecreaser as penetration proceeds the excess diameter decreases from the front of the plate and a tarifing hole is therefore formed. The effect is well substantiated for durtile
materials (Refs. $3 i^{-3}, 409$, but is within the range of practical importance for armour steels unly where rery high velocits projectiles are concerned. A discussion of the practical rignificance in relation to the performance of high velocity tungsten-carbide cores is given in Ref. 3 i 2 . In considering the implications as regards stresses within the projectile the phase of the motion during π hich caritation effects operate becomes important. The largest contribution from the dynamic term in the resistance, regarded as a pressure, must clearis come at the initial stage when the relocity is highest. The local pressure at the tip is therefore angmented eren though the target material may not be leaving contact with the head. Maximum pressure in the sense in which it has so far been interpreted will not. however, have been reached. At a penetration of about four or fire calibres, at which depth maximum static resistance may be expected, the velocity in most practical cases will have fallen below the cavitation velocity. Where a finite plate is concerned the maximam stress considered as $\frac{4 F}{\pi \overline{d^{2}}}$ where F is the maximam resistance, is thos likely to be increased by cavitation effects only in those cases where the projectile has a remaining velocity approaching the caltation velocity. Such cases will be rare, and, in consequence, the practical importance of cavitation effects lies in their concentration of the stress on the nose of the projectile, and the increase they require in total energr rather than in the direct increase of maximum resistance. The caritation velocity $v_{\text {e }}$ for an ogival head of n c.r.h. penetrating a material which offers a mean resistive pressure p and has a density ρ is given in Ref. 409 as

$$
v_{0}=\sqrt{\frac{2 n p}{k \rho}}
$$

Where k is a constant depending on the target material. The approximate value of k for steel is $2 \cdot 3$. A discussion of the value of p as determined from firing trials against thick plates is giren in Ref. 444. Using the ralue $\mu=237$ tons per square inch for plate in the range $230-280$ B.H.N. the critical caritation velocity for a $1 \cdot 4$ c.r.h. projectile is thus found as $v_{c}=246 \overline{\text { f.s. Above this velocity an increase in critical energy may be expected }}$ through caritation. This increase is small within the velocity ranges ordinarily used and further, as shown above, does not necessarily cause an increase in maximum resistance. The increase in resistance in the initial stage of penetration is difficult to estimate, because it is mitigated by the surface effert which allows the target material to flow into a lip. If. bowever, it is taken to be in the same proportion as the increase which wonld orcur deep in the target, a relocity 50 per cent. in excess of the cavitation velocity (i.e., $3 \pi 00 \mathrm{fa}$.) would cause an increase of neally 20 per cent. in the stress, and a relocity equal to twise the caritation velocity would give an increase of more than 50 per cent. in the stress. For rery high velocity attack a considelable reserve of head strength in the projer:ile is thus necessary orer that which would be calculated from the static loadpenetretion curves.

8. Contrbessive Strength Required in Armodr Piebcivg Pbojectuei.

8.1. : trength required to withstand the retardation on impact.

If instia effects of the target muterial are neglected the maximum load F encountered durite peneration can be closely estimated from Fig. 34. Treating the projectile as a rigid iody which is subjected to m maximum retardation of F / \mathcal{I}, $1 /$ being its mass, the maximam stress S_{x} at any section x not immersed in the plate is thus:-

$$
\begin{equation*}
S_{x}=\frac{M_{x} F}{\overline{A_{x} M}} \tag{21}
\end{equation*}
$$

Where $\boldsymbol{l}_{\boldsymbol{x}}=$ mass of the part of the projectile between x and the base and $A_{x}=$ cross-cectional area of the projectile at x.
On these hypotheses the maximum compressive stresses are thus easily calculable for the no:mal attack of a given target when the dimensions of the projectile are known. As regaric compressive stresses it is probable that little error is made in covering the case of oblicue attack by taking the plate thickiness as $t \sec \theta$ where θ is the angle of attack. This assumption probably overestimates the effectire thichness and therefore gires a margis of safety whell used to estimate the strength required in the projectile. Calculations on these lines of the stresses anticipated in various standard armour piercing projectilea are giren in Ref. 325 . In this paper attention is largely directed to the hardness distribation required in the projectile to give it just sufficient strength to writhstand the presscies. It is, of course, not necessary to give a hardness gradient to the projectile
in orde: to prevent failure under compression. A uniformly hard shot with sufficient compresive strength in its head would have a greater reserve of body strength under pure cimpression than a similar shot with its hardness reduced towards the base. The reduce hardness is desirable manly as a means of confering greater resistance to frac-

- ture usider the transverie forces generated in oblique attack. ${ }^{\text {a }}$ For a projectile with a solid c:indrical body the calculation will clearly give a harduess falling linearly to zero at the jase of the shot. The gradient required is one which ensures that the hardness exceeds the calculated value at every point. A projectile with a cavity will lead to a calcolaied curpe with a form depending on the cavity shape. Again the hardness distribaticn actually used would not necessarily follof this form, but would conform to the nearest discribution practicable in ensuring that a reserve of hardness existed at every point. In calculations of this type it is not necessary to take harduess distribution as the \quad onemon quantity. Assuming this to be fixed within limits, optimum values for other design jarameters may be calculated from the static results. These parameters include shell miss and length, volume and shape of the cavity and the dimensions and mass of the bafe plag. A discussion of the method by which optimum values of some of these parame:ers may be determined when the others are specified is given in Ref. 3ī. The problem to which detailed consideration is given in this paper is the deternination of the maximem cavity permissible in a sbell whose hardness gradient and proof conditions are specifiei. The nomerical cases for the \mathbf{b}-inch C.P.B.C. shell and the $\mathbf{J} \cdot \mathbf{2 J}$-inch A.P.C. model © the 15 -inch A.P.C. shell are solved.

In thise problems, which are soluble from the data of the static punching results the conditisas considered are those in the body of the projectile. The luad is distributed round the hea and in this region equation (21) will therefore not applr. In the case of static penetra ion, as has already been shown. the pressure deep in a very thick plate tends to a raige of about $0.9 B$ ton per square inch where B is the Brinell harduess in kg. $/ \mathrm{mm} .^{2}$. At the inrface. i.e., for the initial stages of static penetration, it must necessarily be approsizately $B \mathrm{~kg} . / \mathrm{mm} .^{2}$ or $0.633^{3} B$ ton per square inch. The maximum pressure in regions of the head near the tip if dynamic effects are neglected may thus be taben as $k B$ mhere

$$
0 \cdot 635<k<0.9
$$

If B is the Vickers Diamond Hardness of the projectile lead its static compressive strengit S is approximately giren (Ref. 9i) by

$$
\begin{equation*}
S^{\prime}=H(0 \cdot 1 \overline{\mathbf{1}}+0 \cdot 0 \text { N1: } \because U) \tag{를}
\end{equation*}
$$

This somula \quad as deduced from static compression tests on specimens, $0: 3$ inch dia. meter add 4 inches in length, of two tyltes of projectile steel (Cr.Mo. as used for the 2 - 1 . and Ni.:r. as used for the $2 \boldsymbol{2}-\mathrm{pr}$.). The range of harduess investiguted was $\overline{\mathrm{J}} \mathrm{O}$ to 100 V.D.H. and equation (22) was fitted to the observed pwints, which showed a nearly linear relation. by imposing the condition that the curve sbould pass through the origin. Within the rancs of validity of equation ($\underset{2}{ }$) the minimum hardness H required to prevent cumpressire sailure near the tip of the projectile is thus given by

$$
\begin{equation*}
H(0.17+0.00012 B)=k B \tag{23}
\end{equation*}
$$

Where E is the Briuell hardness of the target. Graphs of this relation for the two values $k=0.635$ and $k=0.9$ are shown in Fig. 36. The danger of compressive failure if the projectile $\mathrm{h}=\mathrm{Ad}$ has inadequate hardness does not strictly apply to the immersed part. Except for conctions in which cavitation effects are significant the surface of the head within the targst is, approximately, under hydrostatic pressure. Failure cannot occur under such corditions. The daugerous region is, therefore, in the close neighbourhood of the section zmediately outside the plate where full lateral support is not available. Even in this region the front petals of the plate will provide some support and hence, since the cross se-ion of the head is increasing from tip to shoulder, the curves giren in Fig. 36 over-estizate the hardness required in the head. The operative curve for most practical cases π :- be fery much closer to that corresponding with $k=0.635$ than that for $k=0.9$. The lati= constant assumes a depth of penetration of four of five calibres. Not only will such tareet thicknesses be rare, but even when thes are encountered the head will be immerse:. and, except in caritation conditions, will be receiving support from the plate.

[^9]

3.2. Fuctors other than retardation affecting strength alld hardness requirements.

There are some factors which modify the conclusions reached above relative to the strengia estimated from static results to be necessiry in the projectile. These factors are:-
?'. The time occupied by penetration is so short that the assumption that the projectile responds to impressed forces as a rigid body, instead of as au elastic body, is only rery approximately true.
(ㄴ: The static and dynamic forces are not equal at all stages, especially when caritation occurs.
(3:. The compressive gield strength of the projectile material is not necessarily the same in dynamic as in static conditions.
(4!. The assumption that the force over any cross-section is purely normal is only an approximate representation of the actual three dimensional state of stress in the projectile.

E.21. Elastic propagation of stress in the projectile.

The sffects to be expected as a consequence of (1) are considered in ref. 295 . Treating the proolem as one dimensional the force-time relation existing at the head will be transmitted down the shot and repeated in the same form at any section until the wave Las $\mathrm{b}=\mathrm{n}$ reflected at the base and re-trunsmitted, with change of sign, to the section concereed. There can thus be no immediate adjustment of the stress to the ralue given by equecion (21) and corresponding with " rigid body " treatment. Complete adjustment will neter occur, but the error inrolred in assuming it in comparatively slow penetrations will le very swall. Taking the velocity of sound in steel as 17.000 f.s. and the projectile as threalibres in length the head will not receive relief from the reflected wave, i.e., \quad d not begin to receive the mitigation in stress which occurs through its finite length. until the ware has travelled the distance of six calibres from head to base and back. \therefore the projectile velocity is r the penetration betore relief arrives at the head is thus $6 r \cdot 17,000$ calibres. At velucities of the order $3000 \mathrm{t} . \mathrm{s}$. more than one calibre penetration will thus hare occurred before the relief arrires at the head. The exact consequense of these effects depends on the shape of the force-penetration curre. Qualitatively the resit must always be that a greater maximum stress occurs at any section than that given \vdots equation (21). The increase is. however. significant only at moderately high relocitiss and is more serious near the lead, where transmission times are relatirely longer. than near the base. Any factor additional to relocity which increases the rate of rise if the force, such as bluntness of the head or bardness of the target will increase the effat. The estimate of refuisite bead-strength indicated by Fig. 36 is not affected by the considerations since the graphs are based on the assumption that the full bead pressus is operative. The body strength must, however, hare some reserve over that indicatid by equation (21). The amount of this reserve cannot be quoted in general terms. jut if the force-penetration curre is bnown it can be calculated for any specified relocit? of attack by the method given in Ref. 295.

3.22. Dynamic component of resistance.

The iclease in stress due to non-equivalence of static and dynamic penetration has in par. been considered (pl. 44, 45). As with the elastic effects in the projectile, the dynam: component of the plate resistance beromes serious only at high velocity. In this care, however, the effect requires an increase in head strength over that shonn by Fig. 36 and, in general. no significant increase in body strength compared with that defined by equation (21). The increase in head strength is required to counter the concenzation of stress towards the tip as cavitation tends to be, or is established. The smallnses of the effect on the body strength is calculated from equation (21) arises as alreadr shown from the fact that when maximum resistance occurs the projectile will usualls have lost sufficient velocity to bring the phenomena into the range where the differerse between static and dynamic resistance is small.
523. Dependence of yield stress on rate of strain.

The :spendence of yield strength on rate of strain mentioned in (3) above has been the susect of many investigations. These show that there is a large dependence in comparitively soft materials, but that the ratio of drnamic to static yield, mbich is alwayp rreater than unity, approarbes unity very closely when the material is hard. In one minod of investigation (Ref. 1) the test is a tensile one, the specimen being suddenly
pulled by the impact of a bullet against a yoke to which it is attached. In a second methol (Ref. 41) the specimen is compressed by being itself fired normally against a very hard arget. This method of testing is frequently called the " Taylor test " since it, like tie first, was originally developed by G. I. Taylor who proposed a simple method of anaigsis for the problem. In the approximation in which the motion of the target is negiected the two simplifying assumptions are :-
(a). As the plastic deformation, due to the stoppage of the projectile head; travels down the projectile the stress at the boundary of the region not yet plastically deformed is \boldsymbol{Y}, the yield stress which it is required to find:
(l_{1}. The plastic boundary travels with a constant relocity c which can be estimated by assuming that the retardation of the rear of the projectile is constant*.
These assumptions are illustrated in Fig. 37.

Let $t=$ time measured from instant of impact of head.
$z=$ distance of base from target at time t.
$\rho=$ density of projectile.
$A=$ cross-sectional area of undeformed projectile.
Witi assumptions (a) and (b) the equation of motion of the undeformed part of the projectile is

$$
\begin{equation*}
A \rho(z-c t)=A Y / d^{2} / d t^{2} \quad \ldots \tag{24}
\end{equation*}
$$

If $y=z-c t$ and x is the value of y when the base comes to rest, i.e., when $z=0$, the first integretion of (24) gives

$$
(d y / d t)^{\Sigma}-c^{\Delta}=2 Y / \rho \log v \prime_{x}
$$

If ite initial velocity is U and the initial length is L, insertion of these conditions gives:-

$$
\begin{aligned}
& Y=\frac{1}{2} \rho\left(\frac{U^{2}+2 U_{e}}{\log ^{2} / x}\right) \quad \ldots \\
& \text { own in terms of the measurable qua } \\
& \text { he latter obtained from assumption } \\
& c=\frac{U}{2}\left(\frac{l_{1}-x}{L-l_{2}}\right)
\end{aligned}
$$

Where I_{L} is the final length of the specimen.
More rigorons analyses of this problem are giren in Refs. 181, 238, 242. The similar probles of the sudden propagation of large strains in wires has received considerable attention (Refs. A.23, A.32, A.36, A.37, A.41, A.43, A.44, 113, 168, 173, 227, 357). Many of thene papers are concerned with the consequences of the result derived in Ref. A. 23 that fiastic strains are propagated at a velocity c related to the stress 8 , strain e, and density ρ by the equation

$$
c^{2}=\frac{1}{\rho} \frac{d s}{d e}
$$

[^10]An eiegant method of ubtaining this result directly from the oue-dimensional equation is giren in Ref. 155, and a review of work on the propagation of plastic waves in Ref. 154. Lescriptions of practical applications of the Taplor tecr to the determination of compressire field stresses are given in the papers from which the results in Table 7 below have been taken:-

Table 7.
Dynamic compressive yield stress, as measured in the Taylor test, compared with static yield.

Refersaco	Matarial	Yield tons/Eq. in.		Velocity rango f.
		Statio	Dynamio	
15	Mrild steel	39	68	1300 to 2850
47	n n	24	68	
47	Med. C .	19	60	800 to 2450
47	Ni. Cr.	63	80	S00 to 2ko
47	Vibreo	74	100	
48	Armour plate	39	77	
48	" ${ }^{\text {n }}$	37	63	1400 to 2400
48	n n	41	77	
48	"	33	77	
61	Mild steel	(B.H.N. 120)	45	
61	Armour plate	(B.H.N. 210)	69	1100 to 2750
81	Shell steal	20	54	
81	Armour plate	40	74	
81	n n	60	83	1500 to 2500
81		80	112	
83	Shot steel	(V.D.H.218 to 238)	67 to 88	1800 to 2400
138	Mild steal	18	45	
136	Ni, Cr	120	125	600 to 1800

Although the rate of strain in these tests is unknown, it must be high. If the results are regarded as applicable to penetration conditious, they indicate that the ratio of dynamic to static compressive yield decreases from about $\dot{3}$ at a siatic gield of 20 tons to aboa: $1 \cdot 3$ at 80 tons (Refs. 118 and 13j). Since the ratio probably continues to approach unity as the static vield increases, and since the head hardness, as shown by Fig. 36. Will almost inrariably be required to exceed $400 \mathrm{~V} . \mathrm{D} . \mathrm{H}$. (s ī tons per square inch vieid) the conclusions already reached relating to head strength do not require any significant modification to allow for differences in the static and dynamic yield. As regards dody hardness, the factor will in many cases permit a degradation in harduess. The amount of the reduction call readily be estimated in any particular case since equation (27) directly specifies the stress the projectile most withstand at any section, and if this is interpreted as dyuamic stress the necessary static strength and bence hardness can be found approximately from the resnlts in Table 7.

8.24. Three-dimensional distribution of stress in the projectile.

An explicit solution for the complete stress distribution in a body moring under an arbitrary force at one end has not yet been obtained. The approsimations so far considered either treat the projectile as rigid or assame one-dimensional propagation of strese a:ong the axis. A closer approximation for the case of a decelerating elastic sphere is given in Ref. 371. The problem considered in this paper is that of a sphere, part of those surface is subjected to a hydrostatic pressure so that. if it were rigid, it would more with a constant acceleration. The complication of wave effects in the elastic sphere is avoided by assuming a body force acting on each element of mass in the opposice sense to the pressure, thus reducing the problem to a semi-static case. To a close approsimation the contours of maximom stress differences in the region of the axis
of s.mmetry are planes perpendicular to the axis, although in their entirety they are necessarily closed surfaces within the sphere. A comparison is given of the axial streas differences thos calculated with the stress which would be calculated, as in equation (4), for a rigid sphere ander the same partial hydrostatic pressure. Considerable differ ences in detail aaturally exist and it appears that the "rigid" assumption might some times considerably under-estimate the stress. The divergence is, howerer. likely to be less serious when the calculations are applied to a cylinder instead of a sphere. For the sphere the contours of largest stress difference occor between the stressed area and the centre and enclose a small rolune with a nearly plane surface perpendicular to the axis. The necessity for high internal hardness within the projectile head, and the occasional fracture of heads across a plane normal to the axis are probably due to thin cause. These considerations will not, howerer. lead to an estimated hardness requirement exceeding that shown in Fig. 36. since the calculation does not indicate stresses exceeding the applied stress.

9. Stresnes Generatrd in thb Oblique Attack of Armodr.

9.1. Mation of the projectile through the plate.

In the field of oblique attack of armour there is at present little exact knowledge of the stresses brought into play mithin the projectile, but from ririous experimental observacions and simplitied theoretical investigations a qualitative idea of the phenomena may be obtained. The initial penetration of an oblique plate by the symmetrical ogival head of a projectile must cause a reaction which is not axial with the projectile and which produces a moment tending to turn the axis further awas frow the normal to the plate. Further, if the projectile has sufficient energy to perforate, the earlier relief of stress on the part of the head mhich first breaks the back surface produces a couple of opposite sense and so tends to rotate the projectile towards the normal. The forward progression of the projectile through the plate is thus accompanied by a see-sam motion. This is illustrated in Fig. 38, which shows multiple spark photographs of the penetration at a striking velocity of about 2000 f.s. by a $2 \cdot \mathrm{pr}$. shot of a $1 \bar{i} \mathrm{~mm}$. I.T. 80 plate at 30 degrees attack. Other photographs showing the motion of 0.303 inch projectiles penetrating various targets may be seen in Refs. 140 and 442. The extent of the ransverse rotational motion clearly depends, amongst other factors, on the velocitr of the projectile. At a sufficiently high velocity the time of penetration is so reduced that only a rert small angular displacement can derelon before the projectile travels geyond the plate. At a velocity in the neighbourhood of the critical velocity the initial orn aray from normal may be very large, causing the presentation of a large surface of the projectile to the front face of the plate. At a velocitr well below the critical velocity the back surface will not be broken and the rotation due to the first couple will continde. alloming the projectile to skid aray from the impact position. Since the resultant magnitude and direction of the reaction in the shot is governed by its disposition relative to the plate there is thus a dependence of stress distribution on velocity of a type thich does not occur in normal attack.

9.2. Bending moment and shearing stress in a rigid rod.

Althongh the magnitude of the forces on the head are thus dependent on several factors which cannot easily be estimated it is possible from simple considerations to determine the approximate distribution of stress along the projectile. Let the latter be regarted as a rigid rod subject to forces as illustrated in Fig. 39.

Length of rod $=l$.
Mass per unit length $=8$.
Reaction at head O at time $t=R$ at angle θ to axis of rod.
Forces at section P distant x from 0 equivalent to :-
(1) a tension T; (2) a shearing force S; (3) a couple Q.

The forces as shown in the larger diagram represent those exerted at P on the section $O P$. Ia the inset the forces acting on an element with boundaries at x and $a+3 x$ are illustrated. The equation for the rotation of this element gires directly the relation :-

$$
s=\frac{-\partial Q}{\partial x}
$$

Fig. 38.
Multiple spark photographs showing the turning of a 2 -pr. projectile during perforation of a thin plate.

FIG. 39.

REACTIONS IN A RIGID ROD UNDER A FORCE AT ONE END.

E/G. 40

VARIATION OF BENDING MOMENT AND
 SHEARING STRESS ALONG A ROD

FREE AT ONE END.

$$
\begin{aligned}
& \text { Bending moment }=Q=R \sin \theta \times\left(1-\frac{x}{e}\right)^{2} \\
& \text { Shearing stress }=S=R \sin \theta\left(1-\frac{3 x}{e}\right)\left(1-\frac{x}{e}\right)
\end{aligned}
$$

Ref: - Aes. 8837.

The equation for the rotation of the section $O P$ is:-

$$
8 x \cdot \frac{x^{2}}{12} \ddot{\theta}=R \sin \theta \cdot \frac{x}{2}-\frac{S x}{2}-Q
$$

and for the whole rod, $s l \cdot \frac{l}{12} \ddot{\theta}=R \sin \theta \cdot \frac{l}{2}$
Hence, $x \frac{\partial Q}{\partial x}-2 Q=R \sin \theta\left(\frac{x^{3}}{l^{2}}-x\right)$

$$
\text { or } Q=R \sin \theta \cdot x\left(1-\frac{x}{l}\right)^{2}
$$

The bending moment thus has a maximum at $x=l / 3$ and since it is zero at $x=0$ and $x=l$ its greatest value occurs at this point. The shearing stress $S=-\theta Q ; \theta x$, is given by:-

$$
S=-R \sin \theta\left(1-4 x / l+3 x^{2} / l^{2}\right)
$$

and thos has a maximium at $x=2 l / 3$. Its value at this position is $-\frac{R \sin \theta}{3}$ aud hence less
in absolate value than the corresponding stress at $x=0$. The variation in bending moment and shearing stress aloug the rod are shown in Fig. 40.
9.3. Qualitative distrilution of stress in a projectile attacking a plate obliquely and its relation to projectile design.
Although the assumptions that the projectile may be regarded as a uniform rod, and that the equations of a rigid body may be applied, are crude approximations, they are sufticiest to indicate that the bending moment is highest in a region set back from the head, and that the shearing stress is highest in the forward part of the projectile. In addition to these forces there will be a compressive stress as already discussed in relation to normal attack. Assuming the projectile to possess sufficient strength to resist failure from the latter stress, the most likely cause of failure arises in the bending moments. To withstand these moments a high "bend strength" is necessary. The bend strength of steel is increased by increasing its ability to undergo plastic deformation afier its field strength has been reached. By giving a hardness gradient to the projectiee, ductility is increased from front to rear, and bending moments which would fracture a fully hardened projectile produce only a deformation which still enables most of the energy to be used in perforating the plite. A discussion of the rariation of the bend stength of projectile steels with hardness is given in Refs. 416 and 443 . Differential hardening provides only a means of increasing resistance to fracture under the stress distribution likely to occur in oblique penetration. It causes no reduction in the applied iorces. The magnitude of the latter can, howerer, be modified by projectile design to a much greater extent in oblique than in normal attack. From the expression for the bending moment it is clear that at a given value of $x_{/} l, Q$ is proportional to l. Hence, the longer the shot the greater is the tendency to fail under the bending stress. This teadency would occur if the reaction R were independent of length. In fact, R will largely be determined by the projected area of the part of the head immersed in the plate and hence by head shape and by the amount of rotation cansed by the impact.

9.4. Theoretical and empirical ineestigations of oblique attack.

An estimate from theoretical considerations of the reaction to oblique penetration by a yared wedge is given in Ref. 445. There is a considerable degree of approximation involved in replacing the three-dimensional problem to one of plane strain by assuming wedge-ifdentation, but it appears from the solution that it is not legitimate to regard the reaction as a hydrostatic pressure over the immersed part of the head. Static measurements of the reaction in oblique penetration present many experimental difficulties. In any case, static measurements in these conditions would gire less direct informa:ion than that obtainable in normal penetration because of the modification in mode of

In wite of the complexity of the conditions, information on the phenomena of oblique penetration is derived almost entirely from empirical inrestigations. Manr trials have been warie to determine the best design of projectile for various conditions of oblique
attack. Some of these are described in Refs. 351, 352 and 354 . In general, these investigations sow that blunt nosed projectiles give the better performance at high obliquily. When the conditions are moderately severe, because of bardness, thickness or obliquity of the target, or high relocity of attack it becomes impossible to preserve a monobloc projectile in an integral condition. In these conditions armour piercing caps can greatly improve the performance of the projectile (Ref. 356).

Empirical investigations into problems of oblique attack include those in which mul. tiple tarzets of special type are concerned. Some of these investigations are described in Chapier 4.

CHAPTER 4.

COMILEX TARGETS.

By C. A. Adams.

1. Introddction.

The eridence and conclusions presented in Chapters 1 to 3 relate almost entirely to the effects which occur when an unyawed projectile strikes a single plate. In the present chapter consideration will be given to some of the effects which are introduced when the armour is so situated that the projectile can arrive only after preliminary penetration of structare or auxiliary armour. These conditions will frequently arise in practice. Preliminary armour may be deliberately introduced as part of the defence, as in the skirting plates of some land fighting vehicles and in sperial dispositions in aircraft. In addition, structural members and ancillary equipment may ocreen the armour as in armourad bultheads in ships, submarines and aircraft. If the preliminary targets merely retardeu the projectile without causing yar, deformation, or breakage their effects would in general cause little moditication in the conditions of impact, and the effects on striking relocity. and possibly angle of impact. could be estimuted. The importance of preliminary impacts arises when the latter moditications are not the onlf effects introdured. Fin cas have a large effect on the performance of the projectile against armour, and nesd not necessarily cause a deterioration. Leformation of the projectile, underatoal in a general sense as including removal of cajp, distortion of biesths, or fracture of the main urat can also produce a lirge eifect hind is arwave disadvantagenus to the bro. ectile. When "spaced armour" is used it is, therefore, usually intended to deform or: braat the projectile, although in sperial cases the introduction of yaw may be intendedwhen it is known that yaw in the projectile will increase its critical velocity against the target concerned.

2. Genhial Condiderationh Afferting the Cen of Spacen Armocr.

If a dien quantly of armour is arailable to protect a gire: area, and if yaw and deformation are neglected, it would le anticipated that a loss of stopping fower would follow faom using the armour as two separate plates instead of one integral plate. In the absence of precime information for the critical velocities of thin plates, and of any general formule for the slopes of the lines relating wtriking and residual energy, no rigorons proof of this effect cun be given. A miong indication is, nevertheless, obtainable as follow:-

Consiger tho plates of thicknesses t_{1}, t_{2} and critical encrgies E_{1}, E_{2} when under uttack by some apecified projectile. Let $\cdot E$ be the critical enerny for a plate of the same material of thicleess $t_{1} \neq t_{2}$. If the critical velocities in tach cane can be expressed in a modified de Marre type formula then :-

$$
\begin{aligned}
E-\left(E_{1}+E_{2}\right) & =C\left[\left(t_{1}+t_{2}\right)^{n}-\left(t_{1}{ }^{n}+t_{2}^{n}\right)\right] \\
& =C t_{2}^{n}\left[(1+a)^{n}-1-a^{n}\right]
\end{aligned}
$$

Where $a=t_{1} / t_{2}$ and $n=1 \cdot 43$.
Gince ! is a positive constant this expression is positive if $u>1$. This result may le proved. for example, by putting:-

$$
\begin{aligned}
& f(a)=(1+a)^{n}-1-a^{n} \\
& f^{\prime}(a)=n(1+a)^{n-1}-x^{n-1}
\end{aligned}
$$

Thus " (a) is positive if $(n-1)>0$. and since $f(0)=0$ the difference $E-\left(E_{1}+E_{2}\right)$ is positive excent at $a=0$, where it is necessarily zero.

In the particular case $t_{1}=t_{2}$:

$$
\frac{E}{E_{1}+E_{2}}=\frac{\left(t_{1}+t_{2}\right)^{n}}{t_{1}{ }^{n}+t_{2}}=2^{n-1}=1.347 \text { if } n=1.43
$$

Thus, nearly 35 per cent. more energy can be absorbed by the plate if it is used as a single plate instead of two plates each of half the thickness. The facts that the peneric. tion formula is not exactly true, and that an orer-matched plate does not abstract exactly the crical energy from an attacking projectile, do not incalidate the conclusion that a Joss of orotecting power would be caused by diriding the plate if only energy considerations were incolved. The result is not surprising when it is remembered that the shear strengin over the interior face of the plate is sacrificed when the division is made.

A further point arising in any application of spaced armour is that supports are recuirel for the additional plate and that where weight is an important consideration they may reduce the weight available for the total armour. The deflection introduced ty the irst plate may also cause a loss of protection. Ender oblique attack the projectile on emergence from the first plate may frequently be deflected towards the normal. Hence, if the two plates are parallel, the projectile will, in this respect, be in a more favourable condition to penetrate the rear plate. All these considerations show that the extra complication inrolved in installing spaced armour can onls be justified by a substintialmedec. fion in the projectiles performance br the effects of ratr or deformation.

3. Yan Cac'sed by Preliminary Targets and its Effects on Penetration.

Anr :arget other than a uniform plate set normal to the line of flight may be expected to generate yaw in a projectile which passes through it. It has been seen (Chapters 1 and 3) :hat couples are brought into play when an oblique target is traversed, and that although they change in sign during penetration, their resultant is usually not zero. If the preiminary target is hit on or near an edge a further cause of rav development exists. Any asymmetrical deformation or fracture of sheath or cap of the attacking projectile will aloo generate yaw. If yaw is developed it may affect penetration of the main armorr in two ways: directly by modifying the application of forces to the plate, or indirectly by causing the projectile to break, when, in an unyawed condition, it would have remained whole. A direct effect may be expected from the increase in the projected area of the projectile on the target. Thus if, as in Fig. 41. the axis of the projectile is inclined at an angie a to its line of Hight, and if its diameter is a and body length behind the shoulder is l, its projected length perpendicular to the line of flight is approximately $1 B=l$ вin $a+d$ cos a.

Wriring the length $A B$ as:-

$$
d B=d[1+2 \sin a / 2(l / d \cos a / 2-\sin a / 2)]
$$

it is that since $1>d$ for all projectiles of ordinary design the projected area is increased by yaz. If the projectile perforated the plate without alteration in presentation an increased critical velocity would be expected corresponding with the increase in the ares of displaced plate.

This direct effect might be the dominating factor in cases in ohich the transverse rotation of the projectile in the course of penetration is negligible, but such cases will be rare. Unless the striking velocity is well in excess of the critical velocity the projectile will be subjected to couples abich will either alter the inclination of the axis or produce breakage. The effects to be expected from the couples, at least in the early stages. can be from Fig. 42.

If, as illustrated in A of Fig. 42, the plane of the yaw is such that the axis of the projectile: more inclined to the plate normal than it would have been in unyawed flight, the realtant reaction R, at the beginning of penetration will also be more inclined to the normal. The moment about the centre of gravity G will also be increased and the initial ricocbet-type of rotation will be intensified. Even if the projectile remains integ. ral under the increased transverse forces the presentation will thus augment the resisting fores and may cause ricochet instead of penetration. Against a thick or bard target the unbalance of the forces is likely to induce deformation or break-op. B of Fig. 42 illustra:es a case in which the direction of yay diminishes the angle between the plate normal and the projectile axis. The reaction R will now become nearer to the normal than it xonld hare been in onvawed attack. In the Fig., the moment would still have the satre sign as in case A, but conditions can arise in which the sign is reversed. The tendency to ricochet trpe of motion can thins be reduced or reversed. Profided the faw is not :no large, a more favourable presentation for penetration thus results and the transreme stresses in the projectile are also reduced. From these considerations it is to be expected that the influence of raw will varr with the type of problem concerned. the prizars factors being the orientation of the rat plane relative to the armonr, and

ARMOUR PLATE PENETRATION.

- FIG. 41
INCREASE IN PROJECTED AREA DUE TO YAW.

FIG. 42.
INFLUENCE OF YAW ON THE CHANGE IN PRESENTATION CAUSED

the amulitude of the yar on impact. The angular relocities possessed by the projectile immeitately before inpact due to its yawing motion in air are so small compared with those arising on impact that they can be neglected.

3.1.- ̀'zo development and yau prevention in relation to aircraft targets.

In tee case of armoured bombers it is possible to a large extent to define the conditions of arisch. In the late nar, tactical considerations of the attack of fighter aircraft on enemy dombers made it reasonable to assume that the bullets would come from a direction asiern of the bomber within a cone of fairly small angle, and that the axis of the cone would be nearly perpendicular to the armoured ballhead protecting the pilot's cabin. From the preceding section and Fig. 42, it is clear that in normal attack yaw must aiways be disadvantageous to the attacking projectile. Although enemy bombers carried no auxiliary plates for the deliberate introduction of yaw the bullets conld arrive at the armour only after penetrating the aircraft skin and various components of atructure asd apparatus. These impacts apply couples to the ballet and, since there may be a comparatively long flight (op to 17 feet) within the aircraft, between the preliminary impact and that against the armour, the yaw at the armorr may have any value up to its zaximum. Analysis of the effects of yaw may be found in Refs. A.11, 106-109, 125,25 and of its causes in Ref. 142. The first group of papers give empirical results for the irequency distribution of vaw against replica aircraft targets, with some results for eo-ipped aircraft, and the results for correlation between yaw at impact and performaze against the armour. On the first point, the frequency distribution naturally depencs on the calibre and design of the attacking bullet. In general. it was found that perfor:ance followed that which would be expected from the projected-area considerations ilustrated in Fig. 41 or from the nomewhat similar assumption that the effect of a gires yaw a is equiralent to that of an increase a in the obliquity of attack.

The specific causes of yaw development in armour piercing aircraft bullets are dis. cussed in Ref. 14.) Whatever components the bullet may hit in its path within the aircraft. : is obvious that it mast penetrate the aircraft skin and that because of the direction of attack this penetration wust occur at rery high obliquity. Impacts against dural $; i$ the thickness used on enemy bombers were photographed at very high frequencies br multiple spark apparatus. I'revious work had shown that when 0.303 inch ball ammu-ition was used against such targets, the bullet nose was rotated towards the norma: to such an extent that the bullet soon set itself perpendicular to the plane of the taret. The photographs had shorn that in these conditions the bullet continued to plough through the dural. but that in doing so it was itself cut into two parts. Only the ban continued into the aircraft, the separated head flying outside.
The actors governing yaw development of other types of bullet were elucidated from photog:aphic sequences such as those shown in Figs. 43 and 44. The latter figure showe s projectile which is able to traverse the replica target rithout significant yaw develor-ment.

3.2. Fiu development and its effect on critical velocity in Saral targets.

The sitack of an armoured deck in a narship provides an example where, unlike that of the sircraft, the existence of yat is almost certain to assist penetration. Just as in the airraft problem, tactical considerations limit the rariability in impact conditions, and it sppears on analysis that the conditions of Fig. 42 B must obtain. The problem is examinsi in Refs. 435, 436, where multiple spark photography has in this case been applied to scale models of the naval conditions. The main armour of a battleship is like: to be of the cemented type and is not protected by outer plating. The interior is, how"zer, also protected by an "armoured deck" and if a shell is to reach this deck it must some from above through the upper decks. The distance at which an enyagement is likelt to be fought defines both the angle of descent and the striking relocity within fairly sose limits. Taking the deck as borizontal, the angle between the deck normal and the line of flight is thins known at the first deck and the problew reduces to that of findiag, in these conditions. the raw caused by penetration of the preliminary decks, the deriation and relocity loss, and the influence of these factors on the impact at the armour:d deck.

The :-fnence of the preliminary decks on the performance of the projectile againt the arminred deck depends on the following three fartors:-
(ii. In its transit through a thin plate the projectile receives an angular relocity tending to turn its axis towards the plate normal.
(:). Sufficient space exists betneen the preliminary decks to allow the angular velocify to develop a significant angular displacement, but the gyroscopir effect from the spin is not sufficiently large in this space to cause mach rotation of the axis from the original plane of motion.
(iii). The attack on the armoured deck occurs at high obliquity, so that the strong tendency to ricochet which exists in unyawed attack is reduced by a gaw which brings the projectile axis nearer to the plate normal.
The iifst tro points are illustrated in Fig. 45 (seé also Fig. 38, Chapter 3). In the last frame of thie sequence the shell has covered less than half the distance between the first and last decks and the inclination of its axis to the original line of Hight is already large. This perticular target is thicker and harder than the preliminary decks: bat the latter produce a similar effect with smaller amplitude. Each preliminary deck gives a rotation in the same sense and the shell, therefore, arrives at the target with a yaw which may be sufficient to make a large difference in the system of forces to which it is then subjected. Fig. 46 shows a siequence in which an initially cepped shell bes traversed three preliminary decks and arrived at the armoured deck with a yaw large enough to canse it to topple ("Topple" is defined below).

From Fig 生B it can be seen that cases can arise in oblique attack in which smald yaws will canse a reaction favouring a ricochet trpe of motion and large yaws will canse a transverse rotation in the opposite sense. The term "topple" is used to describe this motion in which the axis of the projectile moven towards the normal. It is to be expected that both ricochet and topple represent wastage of energy. and that the most farourable presentation for penetration exists when raw is such that in the initial stages very little transverse motation is caused. For some combinations of target thickness and relocity it is thas likely that a range of raws will exist, within which penetration nill be achiered, but outside which failure will occur, by ricachet for the smaller yawn and try topple for the greater. These results were observed ayaint the armonred deck on the model scale.

For a given thickness of armour the range of yaw within which penetration occurs is plain!y dependent on striking velncity. If the relocity is too low failure will occur whatever the yaw may be, and if it is sufficiently high the plate will be defeated at all ralnes of the raw. The resnlts established in the model investigation gave quantitative inforation for the Naval case.

4. Neacme Abmocr and Cap-Stripping.

When cousideration is given to the use of complex targets in defence, it is found much more adrantageous to exploit systems which break or deform the projectile than to dejend on induced yaw. This situation arises not only because yaw can sometimes assist the attacking projectile, as in the attack through decks, but because the full yaw ampisade necessarily tales time to develop after the impulse originating it. Hence, to enable a large yarr to exist at the tinal armour there must either be a large distance between the components of the system, which is impossible in land rehicles, or the preliminary target must give a very large impulse. A substantial part of the total weigit would then be absorbed in the initial target and the system would in mont circunstances become inefficient for the reasons discussed in Section 2 . For an uncapped projectile it is therefore necessary to find whether a comparatively light preliminary. plate can be made to cause breakage. For a capped projectile it may suffce to remore-: the cap, since its efficiency will then he reduced if the main armonr is suffciently hard ${ }_{F}$ ' or it may be necessary to nse both a cap-stripping plate and a breakage plate. .

4.1. Breakage of armour piercing projectiles by thin plates.

Ths circomstances in which small and moderate calibre A.P. projectiles can be broken by tin plates are discussed in Refs. 294, 322, 329 , $3 \overline{7} 8$. 440 and 447 . In considering mears by which large raws might be induced in bullets attacking aircraft the rather surprising resalt was found that comparatively thin targets, through which the projecties could easily penetrate, would, in certain conditions, inrariably break the bullets. Thes targets are specified in the above reports, where the factors involved are analysed.

The determination of a target rhich is sufficient to canse breakage represents. only part of the task of defining an assembly to defeat the attacking projertile. The total energ of the fragments after penetration of a thin plate is not greatly reduced compare with the initial energy of the shot. It is entirely a matter of experiment to find

Fig. 43.
Multiple spark photographs showing yaw development as a result of penetration of aircraft skin.

Fig. 44.
Multiple spark photographs of the penetration of aircraft skin by a ballet to a design which prevents yaw development.

Fig. 45.
Multiple spark photographs showing the resultant transverse sotation of a projectile after passage through an oblique plate.

Fig. 46.
Multiple spark photographs on model scale of a shell toppling against an armoured deck after traversing three preliminary decks.

What is the most efficient and convenient method of stopping the fragments. Empirical investigation provided the necessary information and it was found possible to define a system of spaced plate defence giring significant saving in weight.

The breakage effects tirst demonstrated on small arms bullets were later shown to be applicable to larger calibre projectiles (Refs. $3 \geq 8,329$ and 447). It might be anticipated that the base-tempering adopted on larger scale projectiles would necessitate a relatively thicker front plate in order to cause breakage. Not only is this not found to be the case, but it appears that smaller values of t / d than those required for small arms can be used in the front plate to give break-op in the larger shot.

For projectiles other than conventional A.P. bullets and monobloc shot the shatter plates may fail to produce breakage. From firings with 20 mm . Mauser A.P. ammunition (Ref. 374) it appears that a projectile with reduced nose hardness may survive an impact which woald break harder bullets. It has not been established whether, from the attacking aspect, there would be any overall advantage in using a slightly softer head againgt a spaced target. Soch projectiles would, of course, have a lower performance against aingle plates. Except in cases where they are known to be the only tyle used for the attack, as discussed in Ref. 374, the possibility of their use can ber neglected. For projectiles of $2-\mathrm{pr}$. and npwards, however; the possible existence of armonr piercing caps must be considered. When such caps are present, thin targets dep not break the projectikead Consideration is therefore required of means by which the cap can be broken or removed before impact occurs against the breakage plate.

4.2. Remocal or breakage of armour piercing caps.

Since the caps of projectiles may vary in their design, manner of attachment and beat-treament, and siuce also the piercing cap may be preceded by a ballistic cap, it is not possible to give any general law governing the behaviour of caps against thin targets. For a giren tspe of projectile it is nevertheless possible to investigate the dependence of cap behaviour on target thickness and obliquity and projectile velocity. Trials can thus be made to find whether, for cap-breakage, there is a critical velocity analogous to that for penetration of a shot through a plate. Experiments designed to find such critical velocities are described in Ref. 327. The experimental method is almost necessarily photographic, since in the absence of photographs it is extremely difficult to determine whether or not the cap has been remored and, if it has, the state of separacion or disintegration. The results obtained by photographic methods in Ref. 3크 sow that the factors affecting "critical velocity for cap-breakage" are similar to those for critical velocities for plate penetration, to the extent that removal or breakage is facilitated by increases in (i) striking relocity, (ii) thickness of plate, (iii) obliquity of attack and (iv) hardness of the target plate.

Examples of photographs of the effects of various targets on caps are shown in Figs. 47, 48 and 49 . Fig. 47 (a) shows how perforation may be effected with damage only to the ballisaic cap and Fig. 4^{-1} (b) shows how the piercing cap may be removed without being broken. Complete cap-breakage is shown in Fig. 47 (c). Effects similar to those of Figs. 47 (b) and (c), but on another scale, are shown in Figs. 48 and 49. Fig. 48 shows a case of cap displacement without breakage. Both in this case and that of Fig. 47 (bithere is a strong probability that the shot wonld behave as if capled on a rear target and in these caseg "de-capping" is not deemed to have occurred. Fig. 49 shows two viepr taken simultaneously for a case in which the cap is satisfactorily broken. The dome of material in front of the projectile does not derive from the cap, bat from the mild steel plate and would give no protection to the projectile nose in an impact against hard armour. The photographic investigations have enabled quantitative conclusions to be drawn on the "critical relocity" relationships applicable to capstripping.

5. Application of Spaced Armour to Land Vehicles.

The application of spaced armour to land vehicles is complicated by the severe limitation in available space and by the necessity to protect against a large range of angles of attack. As regards the latter point, it is not possible to restrict consideration to the profection given under normal attack on the grounds that oblique attack favours defence. The protertion of a vehicle is not assessed alone on the basis of any complete immanity it may give against a sjecified projectile up to a specified velocity of attack. The assesment includes the "partial immunity" conferred against other conditions of attack.

It is clear that the variation in performance of spaced plates as angle of attack is changed will differ from that of a single plate. The single plate, or the rear plate in $\boldsymbol{\sigma}^{\prime}$ combination, is either vartical :- inclined about a horizontal axis. Similarly, the inclination of the breakage plate must be about a horizontal axis, to ensure that it has aut oblique presentation from all directions in a horizontal plane. These are the only directions considered, since angles of descent will be small for ground tiring in those conditions under which the attacking projectile has much prospect of success, and attack from aircraft is left out of consideration. The first plate may be expected to deriate the projectile from its original course and so to cause an alteration in the angle of attack of the second plate. The extent of this alteration will depend on the particular conditions of attack. The factors involved are illustrated in Fig. 50 .

Let O be the point of impact on the first plate and let $A B C C^{1}$ be points on a sphere of centre O such that :-
$O B$ is the normal to the second plate ($O B$ is assumed to be horizontal).
$O A$ is the normal to the first plate, $A O B=a$
$C O$ is the original direction of motion making θ with $O B$ (in a horizontal plane).
$C^{\prime} O$ is the direction of motion after deviation, making $\angle \theta^{\prime}$ with $O B$.
Assoming the deviation to be in the plane defined by the original direction of motion and the normal at impact on the first plate, the angle of deviation is $\phi-\phi^{\prime}$
where : $-\phi=\angle A O C, \phi^{\prime}=\angle A O C^{\prime}$
From the two spherical triangles $A B C, A B C^{\prime}:-$
$\cos \theta=\cos a \cos \phi+\sin a \sin \phi \cos A$
$\cos \theta^{\prime}=\cos a \cos \phi^{\prime}+\sin a \sin \phi^{\prime} \cos A$
and hence :-

$$
\begin{equation*}
\sin \phi \cos \theta^{\prime}-\sin \phi^{\prime} \cos \theta=\cos a \sin \left(\phi-\phi^{\prime}\right) \tag{26}
\end{equation*}
$$

where, since B is a right angle :-

$$
\begin{equation*}
\cos \phi=\cos a \cos \theta \tag{27}
\end{equation*}
$$

θ^{\prime} may be expressed directly in terms θ, a and the deflection ($\phi-\phi^{\prime}$) by combining (26) and (27) in the relation :-

$$
\begin{equation*}
\cos \theta^{\prime}=\cos \theta \cos \left(\phi-\phi^{\prime}\right)+\cos a \sin ^{2} \theta \sin \left(\phi-\phi^{\prime}\right) . \quad \times\left(1-\cos ^{2} a \cos ^{2} \theta\right)-\frac{1}{2} \tag{28}
\end{equation*}
$$

Using (26) and (27), or (28), the angle of attack θ^{\prime} on the second plate can be found from a, θ and the deviation $\phi-\phi^{\prime}$. Two simple cases to consider are (i) $\theta=0$, (ii) $a=0$.

$$
\text { (i). } \theta=0 \text {. }
$$

In this case in the absence of the first plate the attack would have been normal on the second plate. Substitution in the equation gives $\phi=a$ and $\theta^{\prime}=\phi-\phi^{\prime}$, i.e., the angle of attact is increased to the fall extent of the deflection, as is obvious from the fact that the whole motion is in the plane $A C B$.
(ii). $a=0$.

In this case both plates are vertical, $\phi=\theta$ from (27), and from (26) or (28) $\theta^{\prime}=\theta$ $-\left(\phi-\phi^{\prime}\right)$, i.e., the angle of attack is diminished by the full amonnt of the deflection. This again is obvious since the motion is now all in plane OBC. Any addition or subtraction to the angle of attack intermediate between these two cases is possible, and there is thas in general no simple way of expressing the deflection governed by (26) and (27). It is, howerer, not surprising that experiment indicates that single plates gain more in immonity than spaced plates as obliquity of attack is increased. A spaced plate assembly is likely to be chosen with reference to its performance under attack along a line normal to the second plate. So far as deflection has any effect the gain is greatest in this condition. As obliquity increases, the gain from this cause diminishes, and at some value alters to a loss It also sppears probable that obliquity has a less marked effect on the penetration of fragments than it has on integral projectiles. From both these canses, therefore, sensitivity of spaced plates to angle of attack is less than that of single plate.

Experimental work on the practicability of using spaced armour on a beary armoured car is described in Refs. 328, 329. An investigation of the use of thin spaced plates for proteetion against 0.303 inch A.P. shot is described in Ref. 322 . In this application very

Fig. 47.
Arditron flash photographs of the effects of thin plates on 2-pr. capped projectile.

(a). Ballistic cap deformed.

(b). Piercing cap detached but unbroken.

(c). Piercing cap disintegrated.

Fig. 48.
Arditron tlash photograph of 6-pr. Displacement of cap.

Fig. 49.
Arditron flash photographs of $6 \cdot \mathrm{pr}$.
Two simultaneous views from different aspects showing breakage of piercing cap.

Fig. 50.

ARMOUR PLATE PENETRATION.

Effects of deviation caused by first plate on the angle of attack of the second plate in OBLIQUE IMPACTS ON SPACED ARMOUR.

55^{2}
Rof:- ALEA 8537.
lightls armoured vebicles mere considered and the rain from spacing was attributed to yaw. The investigations relevant to heary urmoured cars examine the performance of spaced targets under attack by 2 pr. shot as direction and velocity are varied.
A description is given of observations on the effectiveness of various three-plate dispusitions when thichnesses, quality, and inter-plate distances are varied. Specifications are gives of some cowbinatons which represent substantial economy in weight. Nevertheless, the general conclusion is that full exploitation of spaced-plate principles requires of more spece than is asually available in land fighting vehiclea.

CHAPTER 5.

OORED PROJECTILES.

By R. Beeching.

1. Introduction.

As will be clear from previous chapters, a certain minimum energy is necessary to produce a hole of given diameter in any plate, and for plate of any one quality, this minimom energy is a function of plate thickness and hole diameter. Therefore, for saccess at even "point blank" range, the gun must be capable of giving the shot this minimam amount of kinetic eneryy, while some surplus to allow for retardation is necessary for defeat of the target at longer ranges. Thus, all the while a gun fires solid, fall calibre projectiles of a given energy there is a fixed limit to the anount of armorr which it can penetrate, and when shot quality is such that this limit is reached, no forther improvement is possible with this type of projectile and a given gun.

During the war, however, there was a continual need to increase penetration performance in relation to gon energy, either to enable existing guns to defeat some new target, or to make it possible to develop a new gun of reasonable size yet capable of defeacing comparatively thick armour. Therefore, it was necessary to overcome the limitation imposed by the use of solid, full calibre projectiles. One way of doing this was to use a projectile which employed the available shot energy more economicallr, by raking a smaller hole in the plate. This result was achieved by employing projectiles having a heary piercing core of reduced calibre, with light surrounding components to baild the projectile up to full gun calibre. With such projectiles a large part of the mass. and hence a large part of the kinetic energy, was concentrated in the core. and this was employed to perforate a core diameter hole in the plate (ree Table 8, page 63).

For reasons which will become apparent in the next section. successful derelopment of projectiles of this type ras dependent upon employment of sintered tungsten carbide as a core material.

2. The Pbinciples of Cured Shot Design.

In general, the purpose of using cored projectiles is to obtain greater penetratire power than is possible with the same weapon firing solid steel shot. It is interesting, therefore, to consider what conditions must be satisfied to ensure that this result is achiered.

As the Milne formula shows, the energy neressary to produce a bole in a given plate varies as $d^{1.57}$, where d is the shot calibre. Therefore, if it is assumed that this same relarionship holds for the piercing core of a cored projectile, it is evident that a projectile of this type should be capable of penetrating a greater thickness of armour than the corresponding eolid shot, provided it has a kinetic ellergy greater than $\frac{\frac{1}{2} M_{1} V_{1}{ }^{2}}{r^{1.57}}$
where M_{1} is the mass of the solid shot;
V_{1} is the velocity of the solid shot; and
r is the ratio of the solid shot diameter to that of the core.
Consider now the problem of giving the core adequate kinetic energy. The cored shot will normally be considerably lighter than the solid shot, even when the core is of high density material. Since, therefore, the velocity obtainable from a given gun is determined approximstely by the relationship $\frac{1}{2}\left(M+\frac{\sigma}{2}\right) V^{-2}=$ constant

$$
\text { Where } \begin{aligned}
M & =\text { shot mass; } \\
C & =\text { charge Feight ; and } \\
\nabla & =\text { shot velocity } ;
\end{aligned}
$$

the iighter shot will have a higher velocity, but will not have quite such a high muzzle energy as the heavier shot, because a greater proportion of the total available energy will

We used in accelerating the propellant gasses. Howerer, for the present purpose it will be assumed that the shot energy arailable from a given gun is independent of shot weight, although this assumption is favourable to the cored shot.

Suppose the cored shot has a core of mass H_{2} and the mass of the other components is m. Then, if we assume shot energy is constant for a given gun, the ratio of the kinetic energy of the core to that of the solid shot, will be

$$
\frac{M_{3}}{M_{2}+m}
$$

If the cored shot is to be superior to the solid shot

$$
\frac{M_{2}}{M_{1}+m} * \frac{1}{r^{1,67}} .
$$

Experience shows that this condition cannot be satisfied with an adequate margin, if the core is of steel, unless the steel core is made very long, because the weight of components necessury to build a projectile of full gun calibre around the core have a wuss which is too great in relation to the mass of the core. Further, the core cannot be made very long, both because it would break up during angle attack and becanse it would tend to shatter. This is the main reason why a high density core is necessary.

If the weight of the outer components of a cored shot could be made very small, then, apart from the reduction of gun efficiency as shot weight falls and velocity increases, the smaller the core diameter were made, the greater the penetrative performance should become. In practice, however, two factors militate against this. Firstly, the weight of the outer components is by no means negligible, and their weight tends to increase slowly with decrease in core diameter. Since core weight is proportional to the cube of core calibre, it decreases rapidly as the core is reduced. As a result, core energy falls with increasing rapidity with decrease in core size. Secondly, if the core and shot are made very light, and the velocity very high, the retardation due to air resistance becomes large, and shot energy falls rapidly with increase in range. Therefore, there is an opimum range of core calibre in relation to shot calibre, and the best calibre of a heary tungsten carbide core is found to be around balf of the gun calibre.

3. Tungster C'arbiue as a Core Material.

Tungsten carbide, simtered either with nickel or cobalt as a binding medium, nas adopted as a core material by ourselves and others during the war. Its main rirtues ure its high density, nearly twice that of steel, and its high hardness and compressive strength.

The high density of the material permits the design of shot having cores of only about Lulf the foll shot diameter, yet having about balf the total weight of the whole projectile. Further. because the material is so dense, shot with a small calibre core are not so light tha: they have to be fired at extremely high velocities, as would be the case with shot haring a steel core of similar size.

Sinteral tungeten carbide of the types used for shot cores has a hardness of around 1000 to 1200 V.D.H. Tests of the compressive strength of such material are difficult. Nevertheiess, carbide cores of the hardness mentioned, appear to possess a much higher compressive strength than that of hardened shot steel (V.D.H. 850). In any case, it is found that such cores do not shatter when fired against plates many calibres thick, at - striking velocities of 4500 f.s. and over.

The main adverse characteristic of the sintered cores used up to the present time is their bristleness. This can be controlled to some extent by altering the amount and nature of the binder, and by the purity of the porders used, but all types of core used up to the present have been almost completely lacking in ductility.

This brittleness does not matter very much when single plates are attacked at normal incidence. The shot tends to break up before emerging from the plate, bat this does: not matier if the fragments are not too flne. The break-ap may, in fact, spread the : lethal effect: At large angles of attack, however, cores do tend to pulverize beforeemerging from the plate, if they are too brittle.

When :hey are fired against spaced plate targets, the brittleness of tungsten carbide cores is of greater importance, since the core almost invariably breaks up on penetrating the fron plate, and the fragments tend to disperse before stribing the second plate. Because of this. it has been fond necessary to protect the core with a close fitting steel sheath, in shot intended for the attack of such targets. This has the effect of reducing core bresk-up and of prerenting dispersion of the fragments before the core strikes the second piate.

4. Types of Coned Projectilis.

Three main types of cored projectiles were developed by combatant nations during the War. All of these depended upat the principle of using a heary, small calibre, core to punch a small hole in the target, with light surrounding components to build up the projectile to bore calibre. Further, British designs of all three types also had a protective steel sheath round the core. The three types were, however, distinguished by the nature of the light surrounding parts.

4.1. Composite rigid projectiles.

In the simplest type of cored projectile, commonly known as the composite rigid type, the care is surroanded by light components forming a full calibre projectile, generally having an external form similar to that of a conventional shot or shell. Projectiles of this type leave the gan and travel to the target without change of form.

Ther have the adrantages of relative simplicity and of ready interchangeability with other forms of ammunition. On the other hand, since they are very light in relation to their total cross sectional area, they suffer severe retardation and loss of energy at long ranges.

4.2. Equeeze bore projectiles.

To overcome the disadrantage of poor external ballistics associated with composite rigid Frojectiles, cored projectiles were developed which could be swaged down to a smaller calibre, either in a taper bore barrel or in a barrel fitted with a squeezing muzzle extension. With projectiles of this type. the outer components were so designed that they woald squeeze down readily and give a projectile a good ballistic form and of little more than core diameter.

Such projectiles give very much improred long range performance. as compared with the composite rigid type, bat suffer from the disadrantage of not being interchangeable with otier forms of ammonition.

4.3. Sabot projectiles.

To orercome the disadvantages of boih the composite rigid and squeeze bore types of projectiles, a third type of cored shot was developed. This was so arranged that the onter camponents were discarded as the shot left the gan, leaving a sub-projectile, formed by the core and sheath, to continue its travel to the target. This sub-projectile was of high deasity and could be given an external form of low drag coefficient.

Such projectiles could readily be interchanged with other ammanition, and gave good long range performance.

4.4. Comparison of performance of A.P.C.B.C. and cored projectiles:

The relative performance figures at normal and 30 degrees attack for A.P.C.B.C. shot and the corresponding cored projectiles are shown in Table 8. Comparisons are shown for 17 - F., $6 \cdot \mathrm{pr}$. and $2 \cdot \mathrm{pr}$. projectiles. In the latter case the cored projectiles concerned are of the "Littlejohn" muzzle squeeze type, and in the former two cases of the discarding " Sabot" type.

Table 8.
Comparison of thicknesses of plate perforated by full calibre and sub-calibre projectiles.

Gon	Range	Perforstion of homo. plate (mm)			
		Normal		30°	
		A.P.C.B.C.	A.P.D.S. (Sabot projectile)	A.P.C.B.C.	A.P.D.S. (Sabot projeotile)
17-j\%.	$\frac{\mathrm{yda}}{0}$	188	272	151	225
	800	175	250	141	808
	1000	162	232	181	101
	9000	138	182	111	161
6-pr.	$\begin{array}{r} 0 \\ \cdot \quad 500 \\ 1000 \\ 2000 \end{array}$	125	184	100	147
		115	165	92	132
		106	146	85	116
		89	113	71	90
			L.J. Mark II equeere bore		L.J. Mark II squeere bore
2-pr.	0	81	120	66	100
	800	71	105	68	88
	1000	61	$\theta 0$	50	72
	9000	46	60	88	46

t

5. Epbclal Characteristics of Plate Penethation by Cored Projectiles.

The fortgoing sections of this chapter outline some of the ideas underlying the derelopreent of tengsten carbide cored projectiles. In this respect, the treatment accorded to cored profectiles is rather different from the treatment of solid shot in other parts of this volure. It was considered, however, that some explanation of the reasons for using such projtriles was necessary, as they are of recent development and may not be familiar to many readers.

More in keeping with the preceding chapters, is consideration of ans pecnliarities in the mechacism of plate penetration by cored shot, which is the sulject of this section.

So far as armonr penetration is concerned. only the core and sheath of existing forms of cored grojectiles are of imprinnce. The outer components are either discarded, *waged dxan to become part of the sheath, or are so light as to make no appreciable contribution $: 0$ perforation of the plate.

The manr differences between the mechanism of plate penetration by tungsten carbide cores and by solid steel shot arise from the verr great difference in the ratio of thickness of emour perforated to the diameter of the penetrating body. Thus, while steel shot are weldom capable of penetrating more than two calibres of plate, tangsten carlide-cores may penetrate plate eight or more core calibres thick. Becanse of the high relocities at which carbide cores are fired, and their high density, they normally have striking esergies four or five times greater than that which would usually be associated with a $\begin{aligned} & \text { soid } \\ & \text { steel shot of the same calibre as the core. This high energe, together with }\end{aligned}$ freedom form shatter, account for the great calibre thickness of plate penetrated.

Becaust the plate thickness penetrated by a carbide core is so great. the mechanism of penetratis is moch more akin to that assumed in the " expanding hole" theoretical treatmenl. of the penetration problem, described on pp. 20 and 41, than is the case with steel shot. There is little tendencr for the core to form a plug. until perforation is nearly complete, and during most stages of penetration the plate may be regarded as approsimeting to an infinite marr.

5.1. Cavitation.

With steel shot there is evidence that the inertia of the plate material causes the initisl stages of penetration to be more difficult under dynamic conditions than during stacic penetration. With such shot, however, only a small part of the total penetration is associated with sideways displacement of plate material, the major part of the displacement being in the forward direction in ussociation with the tendency to plug formation. Thas, the energy necessary for perforation of a plate is not very dependent apon head form, and may even be reduced by the employment of a blunt head.

In the case of carbide cores, however, the major part of the penetration process is associate with radial displacement of plate material by the shot head. In these circumstances, if the head form is unsuitable and the shot velocity is high, the radial velocity imparted to the plate material may be so great as to cause permanent enlargement of the shot hole, and thas offiset some of the advantages of the small cross sectional area of the core.

This effect has been observed with cores of unsuitable, discontinuous, head form. With sheached cores of good head form, or cores of poor form but relatively low striking velocity, the ehot hole is of uniform core diameter all the way through the plate, except for a scooping around the entrance produced by the sheath. A typical section of such a hole is shown in Fig. 51a. When the head form is poor and the velocity high, however, a cavitation effect is produced akin to that produced by a fast-moving body in a fluid, and the shot hole is tapered, with a diameter well above core diameter near the entrance face. Moreover, becanse the core produces this oversize hole, the sheath does not scoop the face of the plate. but is forced into the space between the core and the walls of the hole. Such a hole is shown in Fig. 51b. The theoretical treatment summarized in Chapter 3 (p. 44) give conclasions which are in close agreement with observation.

6. Penetbation Formules for Cored Projectiles.

The penetration formulæ originally derived for steel projectiles are found to fit equally well for carbide cores, for all practical purposes. The formula most commonly used in practice in this conntry for predicting the performance of this type of projectile, as for steel shot, is the Milne formula. As for steel shot, this gives a good fit with observed resoits for angles of attack up to 30 degrees, and for the ranges of plate thickness and velocity which are of practical interest. The only difference is that the constant (C) in the formula tends to be rather smaller for carbide cores than for steel shot, particularly agaisst plates of high t / d ratio. This means that the carbide core needs rather less energy than would be expected from experience with steel shot fired under conditions of lower t/d ratio.

It has been suggested that this is due to a contribution from the steel sheath, which is ignosed. This seems improbable, however, particularly as the difference in the constant C is most marked with thick plates. A more probable explanation appears to be that, while the $\left(\frac{l}{d}\right)^{1.43}$ term in the Milne formula implies that the mean resistance to penetration sises with increase in plate thickness, this is not likely to be so marked with cored shot. In-so-far as the middle part of a plate of high t / d may be regarded as approximating to part of an inflnite mass, the resistance to penetration over a large part of the penetration mast be insensitive to plate thickness. Thus it appears that the index for cored shot should be reduced from 1.43 to more nearly unity, and it is probable that with the thicier plates the value of C has to be reduced to offset the use of the higher value of the Index Over the relatively small ranges of the variables which occur in practice, the observed results fit equally well for a variety of combinations of values of C and the index.

- FIG. 51

ARMOUR PLATE PENETRATION.

SHOWING THE FORM OF HOLE PRODUCED BY CORED SHOT (a) MHEN NO CAVITATION OCCURS, (b) WITH CAVITATION.

Ref: ARR ess!.

$$
4-4-A
$$

No.	Tite	Authors	Imauing authority	Reference	Dato
a)		G. O. Hatues	A.R.U. Woolwioh	Mot. Ilept. 207/41	April, 1041
21	Attack of 0.303-inoh Bullets on Petalling Plate	C. A. Adsms	A.R.D. Woolwich	-	-
22	Progrese Report on the Penetration Bohaviour of Light Armour	Dr. H. O'Noill	m.O.8. Met. Com.	A.C. 646 Met. 43	February, 1941
23	Second Progross Report on Penotration Behaviour of Light Armour	-	m.o.s. Met. Com.	.C. 881 Met. 56	June, 1941
24	High-Speed Tension Testa at Elevated Temporaturea-Part 1.	-	- ,	American Suciety for Testing Matorials. Vol. 40	1940
25	High-Speed Tonsion Teete at Elevated Temperaturea. Parta II and III.	A. Nadai and M. J. Manjcine	-	Journal of Applied Meohanioc.	-
28	Exporiments on the Penetration of Projeotilea	P. Regnauld	(Translated by A.R.P. Dept., Rewasrulh and Experiments Revords)	-	1938
88	Proliminary Report on Austomperod Armour Plate	-		-	May, 1941
AI	Effeot of Carbide condition on transition Velocity and Bellistio Properties	\bigcirc	American information suppled by Inperial and Foreaign Liaison. (D.S.R., M.O.S.) W.A.	-	-
A 2	Corrolation of Miorostruoture and Ballistio Properties of Armour Plate	-	" \quad	- ,	-
$\Delta 3$	Struotural Models. Part 1-Theory	-	„ „	. -	-
A4	Structural Modola. Part II Mode Invertigations of Armour Structures	-	" \quad -	-	-
A 5	Terminal Rallistica	H. P. Robertaon		8.R. 7/271	January, 1941
A 6	Procedure ubed at the Naval Proving Ground for the Identlication and Adjustment of Armour Penetration and Armour Aibsorption Functions	-	Amorioan inforinution supplied by Imperial and Foreign Liaison	8.R. 7/313	-
A 7	Speoitication AX8 488 for Rolled Armour Plate	-	.. .	8.R. 7/268	Auguat, 1940
A 8	Sccond Partial Report on Light Armour Investigation	-	U.S. Navy Dept.	S.R. 7/457	March, 1938

No.	Title	Anthern	Imening anthority	Reforenos	Inala
34	The Relationship Between Striking Velooity and the Damage causod to Materiala by a 3/32 inch Steel Bell	-	M.H.S., R.E.D.	R.C. 232	July, 1941
35	Critical Perfaration Velocity of a $3 / 32$ inch Steel Ball Gred at Cloth, Manganeas 8twel and "Tufnol Carp"	B.D. Hurnoe and S. Zuckerman	c.d.r.C.	R.C. 239	July, 1941
36	Thyraron Control of a Spark Discharge applied to (i) A High speed Chronograph (ii) Multiple Spark Photography	C.A. Adams	A.R.D. Woolwich	R.D.C. 8340/40 Rpt. A	April, 1941
37	Comparative Examination of Various Silioo-Manyanese Stwel Armour Plate	-	-	Met. Report 380/41	August, 1941
38	Invertigation of the Cause of Flaking (Work by Mond Niokel Resoarch)	-	Tech. Co-ord. Committee on Tank Armour	-	August, 1941
39	Manufacture of Cemented Armour Plate in Poland. Foreign Papers	-	Institute of Tech. Ree. Gen. Staff, Polish Army	B.R. 7/144	-
40	Some Compleritles of Impent Strength	A. V. de Foreet	Tech. Pub. No. 1341 Amer. Inat. Min. Met. Engrs.	-	February, 1941
41	Calculation of Yield Strees in a Cylindrioal Projectile	G. 1. Taylor	C.D.R.C.	R.C. 271	November, 1941
42	Penetration and Residual Velocities	C. Sykes	N.P.L.	A.P.P. Co-ordinating Sub-Committes A.P.P. No. 6	September, 1941
43	Note on Road Research Laboratory Report No. A.R.P./249/N.S.B.J.I.	D. G. Sopwith	-	A.P.P. Co-ordinating Sub-Committee A.P.P. No. 5	Ootober, 1941
44	The Fesistance of Cellulone Acetate Sheet of Varying Mechanical Properties to Penetration by Small Projeotiles	-	R.R.L., M.H.S.	A.R.P./208/N.S.B.	May, 1941
45	The Effect of Temperature on the Reaistance of Celluloee Aoetate Plastics and "Perspex" to Penetration by $3 / 32$ inch Steel Balla	-	M.H.S.	R.C. 274	October, 1941
48	Fourth Interim Report on Conarete for Defenoe Work. The Use of Model Targete and Projectiles in Penetration Teeto	-	M.O.S. F/72/Reports/212	M.0.S./26/A.C.W. H.W.W.P. S.R. 80	October, 1941
47	Firat Report on the Compreseive Yiold Strength of Cylindrical Steel Projectiles Fired at Various Striking Velocitica-Mild Steel, Medium Carbon Steel, Nickel-Chromium Strel and "Vibreo "Steel	-	m.o.s.	$\begin{aligned} & \text { 8/72/351 M.0.8./33/ } \\ & \text { A.C.W. } \end{aligned}$	November, 1041
48	Second Report on the Compressive Yield Strength of Cylindrical Projeotiles at Varioua Striking Velocities-Comparison Between specimens made from the "C"Steel Armour Platen Now. 3135 and 3140	-	M.O.8.	$\begin{aligned} & \text { 8/72/351 M.O.S./34/ } \\ & \text { A.C.W. } \end{aligned}$	November, 1941

No.	Title	Authors	Lesuing authority	Roference	\|Dato
40	Analy vie inf thema Pioriuration Trana	If. A. Lillmeart		11.1. 975	Noromulor, 1041
50	The Performanoo of Shot aysinat Plate	N. Hinchulife,	E.b.D., O.b.	E.B.D. Rept. No. 20	November, 1941
51	Addenduni to leport on Armour Penetration of 0.303-inch Dullots	-	A.R.D. Woolwloh	-	July, 1941
52	Meohanical Properties of Mcsors. Firth \& Brown's 12-inch " C" Plates Nos. 3135 and 3140)	-	A.R.D. Woolwoh	Mot. Report 584/41	November, 1911
53	Attack of 8 mm. Petalling Plate No. 1899 and 5 mm . Petalling Plate No. 1899A. Part III	a. O. Hainee	A.R.D. Woolwich	Phywics Soction Balliatios Branch Rept	Ootober, 1941
54	Attack on Homogenoous Hard Armour hy 2-pr.	-	D.t.D.	Exptl. Report A.T. 2	October, 1941
65	Betrachtungen uber die Dynamische Durehdringung. (Foreign papers)	C. Panseri	-	Aluminium Vol. 23, 1941, p. 296	June, 1941
50	Determination of the Resiatance to Deformation in Dynamic Upsetting and of the Coefficient of External Friction for eoveral Structural Steels.	K. Ginzburg, N. Ul'man	-	Iron and Steel Inst., Translation No. 42	Septomber, 1041
$8_{6}^{\text {A } 19}$	Construction of the N.D.f.C. Experimental Firing Range at Prinoton Univerrity	H. D. Smyth	N.D.R.C.	Progrens Rept. No. A. 6 B.R. 7/302	June, 1941
67	Nous on M.A. Bethe's "Theory of Armour Penetration" II. Statio Penetration Enlargement of a Hole in a Flat Sheet at High Speed	C. I. Taylor	c.d.r.C.	$\begin{aligned} & \text { R.C. } 279 \\ & \text { R.C. } 280 \end{aligned}$	Novermbor, 1941
58	Report on Distortion of Melal in Penetration by Statio Punches and Bullets	-	m.os. ${ }^{\text {d }}$ D.s.R.	F. $72 / 298$	October, 1941
68	First lleport on an Inventigation of the Mechanical Propertiee of Seleoted Armour Plates	-	N.P.L	Eng. Dept./72K/ P.J.H. ; H.J.T.	Deoember, 1941
60	The IRelation betwren the Ponetration Resistance and the Residual Velocity of a Spherical I'rojectile perforating Plastic Sheets	, -	m.o.s., R.R.L.	8/72/351/M.0.S./43/ A.H.D.M., N.S.B.	Decembe; 1941
${ }^{1}$	Third Interim Report on the Determination of the Compreasive Yicld Strength of Steel 1'rojectiley-Effoct of Specimen Dimensions on the Resulta obtained with Mild Steel	- :	m.o.s.	$\begin{aligned} & \text { F/72/351/M.0.O. } / 45 / 4 \\ & \text { A.C.W. } \end{aligned}$	Decemiur, 1841
62	On the Analysis of Plating Trals	E. A. Mulne N. Hincheliffe	e.b.d., o.b.	E.B.D. Rept. No. 22	Deoember, 1941
${ }^{3}$	Rubher Bonded Stoel Plates for Armour	-	A.ll.D. Woolwich	Met. Reptt. $642 / 40$	November, 1941
64	Penetration of Steel under Static and Dynamic Conditio	C.4. O. Baines	A.R.D. Woolwioh	R.D./Ball. Repl. 3/41	November, 1941
65	Surface Markingn on Projectiles caused by Impact on Armour Plato	W. Il. Dean, H. W. P'anmons	A.R.D., Woolwich	R.D./Ball. Ropt. 4/41	Deocember, 1941

No.	Titlo	Authom	Imaxinu nuthurity	Inronomum	Irato
${ }^{66}$	An Eatimation of the Rexistance Offered by a Plastic Medium to the Normal Penetration of a Punch under Static Conditions	E. N. Fox	A.R.D. Wootwoh	R.D./Ball. Rept. 14/41	Deoember, 1941
67	Multiplo Spark Plotographs of the Attack of Armour Plate	C. A. Adams,	A.R.D. Woolwioh	R.D./Roll. Rept. 19/42	January, 1042
68	Passing through a plate Experimenta on the Lann of Rotational and Translational Velocity of a Projeotile on	G. O.c. Probert	A.R.D. Woolwioh	R.D. 4051/41	January, 1942
${ }^{69}$	Notea on the Penetration of Armour Piercing Projectilee	oldale	D.T.D.	xptl. Rept. A.T.II	Decembor, 1941
70	The S	D. Stockdale	D.t.D	rptl. Rept. A.T. 13	January, 1942
71	Ballistio Properties of Armour f	Slueckd	.T.	Exptl. Rept. A.T. 17	January, IC42
72	Observations on Homogeneous Armour Plates, (as manufactured in Poland)	Biernacki and Wrazej	Inst. Tech. Res. Gen. Staff, Polish Army	s.R. 7/441	Deeember, 1941
73	Rapid Tonsion Teata using the Two-Load Method	A. V. de Fonext, C. MuGregor and A. R. Anderson	-	Aner. Inst. Min. Met. $\underset{1393}{ }$ Engrs. Tech. Pub. No.	Decomber, 1941
$\rightarrow{ }^{\text {A } 20}$	Attempt of a Theory of Armour Penetration.	H. A. Bethe	-	S.R. 7/389	May, 1041
	Effect of Alloying Elementa upon the Physioal and Magnetic Propertien of Hadfield's Steel for Armour Plato	J. Chipman	N.D.R.C./Serial No. 138	8.R. 7/1214	Decomber, 1941
74		--	D.S.I.R., N.P.L.	C.W./J.M./137	December, 1941
75	Report on the Metallurgical Examination of a Low-Carbon Steol Plate attack by a 2-pr. Shot	-	м.o.s.	W.D.r./J.M./I3	January, 1942
78	Report on the Metallurgical Examination of Two 55 mm . Homogeneous Machinable Armour Platea Nos. 2342 and 2343	-	M.o.s.	W.D.R./J.E./163	February, 1942
77	Comments on Two Recent Heports on Formulee for Armour Plate Penetration	D. a. Sopwith	-	$\begin{array}{\|c} \text { A.P.P. Co-ord. Sub. Com. } \\ \text { Paper No. } 14 \end{array}$	Fehruary, 1042
78	Summary of Armour Ponctration Formulso	D. G. Sopwith	-	A.P.P. Co-ord. Sub. Com. Paper No. 15	Fobruary, 1042
79	Data Relating to Shatter	-	-	A.P.P. Co.ord. Sub. Com. Paper No. 23	March, 1942
80	Shatter	-	-	A.P.P. Co-ord. Sub. Com.	March, 1942
81	Piercing Shella and Armour Plares "Compresesive Yield Strangth" of Cylindrical Projeotiles out from Various Armour.	-	R.R.L.	8/72/351 M.0.S./82/	February, 1942

No.	Title	Authors	Inauing suthority	Hoference	Data
82	The Itexintancs of Midd sloel to Penetration by Steel Kalls of Various Siwe	-	m.o.s.	$\begin{aligned} & \text { 8/72/351 M.O.S./04// } \\ & \text { N.B.B. J.I. } \end{aligned}$	Fobruary, 1042
83	The " Dynamio " Compreseive Strength of Steel from the base of 2-pr. A.P. Shot	-	M.O.s.	$\begin{aligned} & \text { 8/72/351 M.O.S./74/ } \\ & \text { A.C.W. } \end{aligned}$	March, 1942
84	Seventh Interin Report on Concrete for Defonce Work. Conorete to Hesist Multiplo B-pr. Attack. Detailed Results of Model Tests	-	M.O.S.	M.O.S./84/A.C.W. H.W.W.P. F 72 Repte. 212 (8.R. бо)	April, 1942
85	The "Dynamic " Compressive Yield Strength of Duralumin	-	M.O.S.	M.O.s./97/A.C.W.	April, 1942
80	On the Conduot of Plating Trials, with an Appendir on the Performunce of 2-pr. A.P. Shot	E. Milne and N. Hinchcliffe	E.B.D., O.B.	E.B.D. Rept. No. 24	March, 10/2
87	Experiments with Carbon-Manganese Stcel to Specification D.T.D. 188 to determine its suitability as armour Plating	-	A.R.D. Woolwioh	Mct. Rept. 551/41	November, 1941
88	Phenomenological Theory of Armour Penetration	J. W. Harding	A.R.D. Woolwioh	R.D. Ball. Rept. 21/42	February, 1942
8 B	Attack of 0.303-inch A.P. on Homogeneous Hard (I.T. 70) and Homogeneous Machineablo (I.T. 100) Armour	A. J. MeAlpine Downie	D.T.D.	ExptI. Rept. A.T. 14	January, 1942
90	Attack on Homogeneous Hard and Machineable Quality Armour by 15 mm . Beas W. Mark 1 Z	D. Storkdale	D.T.D.	Exptl. Hept. A.T. 19	March, 1942
01	The Effect of Using Capped Shot	1). Storkdale	D.T.b.	Exptl. Hept. A.T' 25	April, 1042
92	Bullistic l'ropurties of Armour from Front of Pz Kw. III.	H. Harris Jones D. Stockdale	D.T.D.	Expll. Rept. A.T. 26	A pril, 1942
03	Attack by 2.pr. A.P. on thin Homogoneous Hard and Machinesblo Quality Armuar at Obliquo Angles	H. Harris Joncs	I.T.D.	Exptl. Ilept. A.T. 28	April, 1942
94	Note on the Effect of Low Temperature on the Bullet-Kesisting Properties of Homogeneous Hard Armour Plate	F. W. Lill, S. W. Triggs and S. H . Oelmen	R.A.E.	Note No. Arm. 33	December, 1941
95	The Heat Treatment of 2-pr. A.P. Bhat	-	Mond Niokel, licas. Lab.	R 88	-
96	Armour Plate Improvement as Rolated to Statistical Analysis of Manufacturing data	-	Dept. of Mines and Resourcope, Ottawe. Ore Dressing and Metallurgical labe.	Invest. No. 1144	Jenuary, 1942
A 22	A Now Type of Accelerometer for High Accelerations	A. V. de Forest and J. R. Ikenjamin	N.D.R.C.	Rent. on Contraot No. N.D.C.re-199 S.R. 7/1580	January, 1812

No.	'1itlo	Authern	Imaulug authority	Inforanum	Data
A 23	On the Pronagation of Plastio Deformation in Solids	T. von Karman	N.D.R.C.	N.D.R. Committoe Rept. No. A.29. 8.1. 7/162A	January, 1942
97	The Compressive Strongth of Two A.P. Shot Materisto	--	D.S.I.R., N.P.L.	A. P. P. Conord. Sult. Com. Paper No. 25	May, 1942
98	- First Progreess Report on the Investigation of Soale Effeot in Armour Penetration	-	- '	A.P.P. Coord. Sub. Com. Peper No. 27	May, 1942
ω^{0}	Note on the Eiffet of Internal Stresecs on the Ressistance of Armour Plate to Perforation	-	-	A.P.P. Co.ord. Sub. Com. P'aper No. 28	May, 1942
100	Roport on the Metallurgical Examination of 2-pr. Shot Fired at Homogeneous Armour Plate	-	-	A.P.P. Co.ord. Sub. Com. Paper No. 29	May, 1942
101	Penctration of Sleel under Statio and Dynamio Conditions-Parts VI, VII and VIII	G. O. Baines	A.R.D., Woolwich	R.D./Ball./Rept. 22/42	March, 1942
102	Forced Vibrations of an Elastio Plate caused by Normal Impact	W. K. Dean	A.R.D. Woolwich	R.D./Rell./Rept. 24/42	March, 1942
103	An Examination of Beardmore's I.T. 70 Platen which were prone to Spontanoous Gracking	-	A.R.D. Woolwioh	Met. Rept. 208/42	April, 1942
104	Examination of Front Hull Inner Platas Anaembly from a German Pr. Kw in Tank	-	A.R.D. Woolwioh	Met. Rept. 232/42	April, 1942
- 105	The Ballistio l'ropertien of Armour from Pz. Kw III (A.E.C.)	D. Stockdale	D.T.D.	ExptI. Mept. A.T. 40	June, 1942
106	Yawing of Bullote by a Heplica Heavy Bomber Fuselage [R.D. Arm. 3 (d)]	-	M.A.P.	Firing Trial Summary No. 20	December, 1941
107	Penetration of Armour Plate by Yawed Bulleta	[R.D. Arto. 3 (d)]	M.A.P.	Firing Trial Summary No. 21	March, 1942
108	Targets for Dovelopment of 0.50 inch A.P. Ammunition	-	0.r.s.	O.R.S. Ref. F.T. 193	July, 1941
109	Machineable Armour Plate	-	O.R.S.	O.R.S. Ref. F.T. 238	April, 1942
110	Armour Protection of B. 8/41 (Crow)	-	O.R.S.	O.R.S. Ref. F.T. 250	May, 1942
111	Armour Penetration within Structure by 15 mm . Hona A.P. Ammunition	- .	o.f.s.	O.R.S. Ref. F.T. 251	May, 1942
112	Forcign Papers. Armour Plate Quality and its Relation to Physical and Chemical Teats	-	Lept. Mines and Resources, Ollews	Ore Dresping and Met. Lab. Inv. No. 1167	February, 1942
A 24	Armour Piercing Bullets with Sintered Carbide Cores	J. Loader	A.P.G.	Ballistic Research Lab. Rept. No. 262	November, 1941
A 25	The Ilastic Propertica of Metals at High Rates of 8train	F. Soitz A. W. Laweon and P. Millor	N.D.R.C.	Progross Rept. No. A. 41 8.R. 7/1938	April, 1942

No.	Title	Authors	Jrsuing authority	Heferenoe	Date
A 9	The Mraninomont of Iatuo Tianaiout Hireare	II. W. ©hanamand W. Garten and J. A. Crocker	n.b.tes.	B.1t, 7/IVSI l'ionroen Hept. No. A. 45	A1711, 1194:
A 27	The Now Vertical Firing Chamber and Conerote Iahoratory at Prinoeton University	J. E. Burchard	N.D.R.C.	8.R. 7/2235 Progress Hept. No. A-64	May, 1042
113	The Plaatic Wave in a Wire extended by an Impact Ined	G. I. Taylor	C.D.f.C.	R.C. 329	June, 1042
114	Some Comments on the Road Research Laboraturies Rejort M.0.8./64/N.S.B. J.I. 1942	-	D.S.I.R., N.P.L.	A.P.P. Co-ord. Sub. Com. Paper No. 30	Mey, 1942
115	Report on the Examination of Steel Bells after Recovery from Targeta	-	-	A.P.P. Co-ord. Sub. Com. Paper No. 31	May, 1942
118	Report on Sub-Calibre Trisls on Five Machincable Quality Tank Armour Plates	-	-	A.P.P. Co-ord. Sub. Com. Paper No. 38	August, 1042
117	Internal Strains in Cylindrical Projectiles after Firing at Armour Plate	8. L. Smith and W. A. Wood	-	A.P.P. Co.ord. Sub. Com. Paper No. 39	August, 1042
118	Second Report on the "Compreasive Yield Strength" of Cylindrical Projectilea out from Various Armour. Piercing Shells and Platea	-	R.K.L.	M.0.s./139/A.C.W.	September, 1942
118	Interim Report on the Measurement of the Deoeleration of a Shell Penetrating Armour Plato	-	M.O.s.	M.0.S./145/D.J.M.	September, 1042
120	On the Ocourrence of "Shatter"	E. A. Milne and H. Hincholiffe	E.B.D., O.B.	E.B.D. Rept. No. 30	Ootober, 1942
121	On the Elastic Stresees Produced by Indenting Thick Platea, with an Application to a Phenomenological Theory of Arnour Penetration	J. W. Harding and I. N. Sneddon	A.R.D. Woolwich	R.D./Ball./Rept. 21/42	June, 1942
122	Further Experiments on the Armour Penetration of 0-303-inch Bulleta	G. O. Raines	A.R.D. Woolwich	R.D./Rall./Rept. 49/42	July, 1942
123	Penetration of Steel under Statio and Dynamic Conditions. Part IX	C. O. Baines	A.R.D. Woolwleh	R.D./Ball./Rept. 70/42	Ootober, 1942
124	Some Comments on Gun-Performance Prediction	-	D.T.D.	ExptI. Rept. A.T. 67	September, 1942
125	Penotration of Armour Plate by Yawed 15 mm . Beas A.P. Bullets [R.D. Arm 3(d)]	-	M.A.P.	$\begin{aligned} & \text { Fling Trial Summary } \\ & \text { No. } 21 \end{aligned}$	August, 1942
126	Internal Strees in Homogeneoue Hard Armour for Tanke	-	Mond Niokel Rewoaroh Laboratories	R. 79 No. 4	
127	The effect of Tempering on the Internal Stresses and Crack Sonsitivity of Nickel-Chromium-Molybdenum Steel Plate welded with Austenitio Electrodes	-	Mond Nickel Reeearch Iaboratories	R. 79 No. 9	

No.	'Ivio	Anchome	Issalilig authurity	Iteliaranco	Dato
128	Statistioal Analysis of Armour Data, Applied to the Ceneral Steel Castings Corporation	-	Dept. or MTnes and ? Fheourcen, Olláma Invert. No. 1163	B.R. 7/2031	February, 1942
129	Cold-Temperature Teats on Armour	-	Dept. or Mines and Resources, Otlawa. Inveef. No. 1210	" 8.8 .7 '7/2340	Mey, 1942
A 28	Non-Strategio Substitute for Small Arma Armour-Pieroing Bullet Cores	-	MankFord Arbënal (Eng. Div., S.A.A. Dept.) Div. S.A.A. Dept.)	\&. ${ }^{\text {E. }}$ ' '7'/2047	"wor"
A 29	"Final Report" to the U.B. Corps of Engineers	-	N.R.C.	S.R. 7/238-7	June, 1941
, A30,	A doublo Pundulum for Use in Eludies of the Rallistio Behaviour off Armour	G. T. Reynolds and - R. K. Kramer	N.D.R.C Rept. No. A-62	8.R. 7/2508	June, 1942
A 31	Addendum to von.Karman's Theory of the Propagation of Plastic Deformation in Solida	J. H. Holloman and C. Zener	N i. C Rept. No. A-37M	B.R. 7/2431	June, 1042
$\dot{A}^{\Delta 32}$	A Dote on fon Karman's:Theory of the-Propagation of Phastic Doformation in Solids	-	$\begin{gathered} \text { N.D.R.C. } \\ \text { Memo. No. A. } 41 \mathrm{M} \end{gathered}$	8.R. 7/2432	June, 1942
, 433	,Theory of a Two Dimensional Ballistio Pendulum	V. Rojansky	$\begin{aligned} & \text { N.D.R.C. } \\ & \text { Hept. No. A-6B } \end{aligned}$	B.R. 7/2567	July, 1942
, A 34	. Bellistie Tpeste of Small Armour-Phatea for the Prarliford Arsenal	G. T. Reynolds, R. L. Kramer and W. Bleakney	N.D.R.C. Rept. No. A. 67	S.R. 7/2588 -	July, 1942
A 35	Non-Bellistio Test for Armour Quality	R. F. Mehl, M. Gensamer and C. Berrett	N.D.R.C. Serial No. M-11 Progreas Report	8.R.' ${ }^{\prime \prime} / 2683$	July, 1942
A 38	The Permanent Strain in a Uniform Bar due to Longitudinal lmpact	M. P. White and Ia V. Griffis	N.D.R.C. Rèti.. No. 71 Progress Repl.	8.R. $7 / 2648$	July, 1042
, A 37	Commenta on White and Griffis' Theory'of the Permanent Strain in a Uniform Bar due to Longitudinal Impact	H. F. Bohnenblust	N.D.R.C Memo. No. A-47M	S.R. 7/2797	Augurt, 1042
, A 38	, The Effuot of a Bolid Lubrioant on Bullet Penetration	R. L. Kramer	$\begin{aligned} & \text { N.D.R.C. } \\ & \text { Memo. No. A-49M } \end{aligned}$	8.R. 7/2975	Auguat, 1942
A 30	Teata of Plastio Armour Receivod from the National Research Council of Canada	' R. J. Emitoh and R. A. Beth	$\begin{gathered} \text { N.D.R.C. } \\ \text { Memo. No. A.50M } \end{gathered}$	S.R. 7/2975	Augum, 1942
. 131	Report on the Examination of a 2-pr. Shot and 6 inch N.C. Ptate usod for Shatter Teote	-	D.S.I.R./N.P.L.	W.P.R./J.E./314	September, 1942

No.	Tille	Authora	Isauing authority	Heferersbe	Dato
132	No. LVU anild itus		m.os	w.r.u./P.10/39\%	Heplimulier, 10942
133	Sccond Report on an Investigation of the Mechaniaal Propertiea of Seleoted Ármour Matee	-	m.os.	Eng. Dept. 72K/P. .j.H. H.J.T	Ootober, 1942
134	Prellminary Touts on the Uno of 4 Inch Plantio Protontive Plating for Proteollon of Looumotives agalnat Airoraft Altevk with 20 mm . A.P. Bhot	-	R.R.L., M.O.s.	m.0.8./168/D.B.W.	Novornter, 1989
135	The Dynamio Compressive Yield Strength of Steel Projectiles. Summery of Reeults of Testa on Various Armour. Pieroing shells and Armour Plates	-	m.os.	м.0.s./172/A.c.w.	November, 1842
136	The Effect of Calibre Size and Specimen Iength on the Dynamic Compressive Yield Strength of Cylindrical Projectiles of Mild Siteel	-	m.os.	м.0.s./173/4.c.w.	Deoember, 1942
137	The Rexistance of Thiok Plates of Hard and Soft Duralumin to Ponetration by Steel Helle of Varioue Sizes	-	M.0.8.	M. O.S.//778/H:LL.D.P.	Decomber, 1942
138	A Note on the Effect oh Armour Penetration of the Floxibility of the Plate	E. H. Lee	E.b.D., o.b.	-	December, 1942
139	Note on de Marre's Formula	W. R. Dea	A.R.D. Wootwioh	R.D./Ball./89/42	Soptember, 1942
el 140	Investigation by Mulliple Spart Photography of Angle Attaok of 0.303 inoh W. Märk 1 Bullets againat Homogeneous Hard Armour Plate	C. A. Adams, H. R. Calvert and H. F. Mills	A.R.D. Woolwioh	A.R.D./Ball./75/42	Ootober, 1942
$14 i$		o. Baines	R.D. Woolwich	R. $\dot{\text { b }}$ //Ball./90/42	Desember, 1942
1 ± 2	The Yaw caued by the Impaot of a Spinning Projeotile on the thin Target-Part 1	C. A. Admms H. R. Calvert and \mathbf{H}. F. Hills	A.R.D. Woolwioh	A.R.D./Rall//13/43	February, 1043
143	Report on Experiments on the Effot of Mechining Armour Plates	-	T.	Rept. M. OOn/m/1 No. 1	July, 1942
144	Balliatios of Pront Armour of Crueader	Guthrio	ot. ${ }^{\text {d }}$	Exptl. Rept. A.T. 47	August, 1942
145	Effect of Surfios Strechiming upon the Ballistio Propertiea of Roiliod I.T. Bo Armour	t. O'Neill	L.M.s. Heas. Dopt.	-	July, 1942
146	A Statistical Analysis of $\mathbf{6 0} \mathrm{mm}$. Armour Plate from the Dominion Steel and Foundries, Limited	-		S.R. 7/2338	May, 1942
147	Dominion Foundries and Steel Limited, 60 mm . Armour Ylate Hallistio Limit Teat Resulta Presented in Qubility Control Chart Form	-	Dept. of Mines and Rebouroes, Otlawa. Ore oal Leab. Intestigation No. 1298	S.R. 7/3074	Septembefr, 1042

No.	Truso	Auclurs	lomuluy avilurity	Inforaino	Dato
148	Some Consideration on Anti-Tank Weapons and Armour Pieroing Bullets	A. B. Bolt	Royal Norwegian Alr	-	Juls, 1942
A 40	A Brief Summary of Reoent Dala on Penotration in Conorste at Various Scales	P. A. Beth	Intorim Report to the Chief of Engineera, U.S. Army, by the Committee on Bombing 1941-42 No. 18 Passive Proteotion against	8.R. 7/1478	-
A 41	Propagation of Plantio Wavea. A Comparison of N.D.R.C. A-29 and R.C. 329	H. F. Bohnenblust	$\begin{aligned} & \text { N.D.R.C. } \\ & \text { Memo. No. A.б3M } \end{aligned}$	8.R. 7/3140	September, 1942
A 42	Plastic Deformation of 8teel under High Preesure	P. W. Bridgman	N.D.R.C. Rept. No. A-95 Progress Report	8.R. 7/3141	September, 1042
A 43	The Propagation of Plastic Wavee in Torsion Specimene of finite Length: Theory and Methods of Integration	Th. von Karman H. F. Bohnenblust and D. H. Hyers	N.D.R.O. Progrosg Rept. No. A• 103	8.R. 7/3257	Ootober, 1042
A 44	The Effect of Stopped Impeot and Refleotion on the Propagation of Plastio Strain in Tension	R. E. Duwez, D. 8 . Wood, D. B. Clark and J. V. Cbaryk	N.D.R.C. Progress Rept. No. A-108	8.R. 7/3327	November, 1042
A 45	The Balliatio Properties of Mild Steel, including Proliminary Testa of Armoar Steel and Dural 1	Ballintios Research Group, Princeton Univeraity	N.D.R.C. Progress Rept. No. A-111	8.B. 7/3525	November, 1042
A 46	The Correlation of Metallographio Struoture and Handness Limit with Belliatic Pro. perties of Armour Plate	C. H. Lorig, P. C. Rownthal and A. R. Fira	N.D.R.C. Progrese Rept.	S.R. 7/3647	November, 1942
A 47	The Correlation of Metallographio Structure and Hardness Limit with Bellistio Propertics of Armour Plate: Literature Survey	C. H. Lorig	N.D.R.C. Progrese Rept.	8.H. 7/3545	November, 1942
140	The Correlation botween the Mechanioal Propertios and the Ballistio Qualities of Tank Armour Bamod on Data Supplied by the Department of Tank Design	P. J. Higge	D.S.I.R., N.P.L.	A.P.P. Coond. Sub. Com. Paper No. 35	January, 1043
150	Note on Residual Velocity Moasurement by a Magnetic Mothod	-	D.S.I.R., N.P.L.	A.P.P. Co-ord. Sub. Com. Papar No. 45	Deoember, 1942
151	Third Report on an Investigation of the Meohanioal Properties of Solooted Armour Plates	-	m.o.s.	Eng. $72 \mathrm{~K} / \mathrm{P} . \mathrm{J} . \mathrm{H}$.	February, 1943
152	Second Progrees Report on the Investigation of Soale Effect in Armour Penetration: Effect of Hardnean on Plate Performanoe	D. O. Sopwith, A. F. C. Bruwn and V. M. Hickson	M.O.S.	A.P.P. Coord. Sub. Com. Paper No. 60	February, 1943
163	Reports on Determination of Critical Velooity for Perforation from Measurements of Striking and Reenidual Velocity	-	M.o.s.	A.P.P. Coond. Sub. Com. Paper No. 63	May, 1943

No.	Titlo	Authora	Isasuing authority	Roferance	Dato
188	Graphinal Solutions for Problorna of Strain Pmpagation in Tennien			N.12. 7/417\%	Jannary, In4,
180	On the Propagation of the Plastio Doformation produoed by an Expunding Cylinder	$\begin{aligned} & \text { J. S. Kochlor and } \\ & \text { F. Seitz } \end{aligned}$	Armour and Ordnatice O.S.R.D. 1214 Repmit No. A. 130 O.S.R.W.	B.R. 7/3816	January, 1443
170	Flame Hardening of Homogeneous Armour Plate (O.D.-88)	P. E. Kylo	Progresa Report Serial No. M.32. o.S.R.D. 1189	8.R. 7/3788	January, 1943
171	Examination of Enemy Material: A Motallurgical Study of a Sumplo of Gerinan Surface Hardened Arnour Hlate	H. W. Gillatt	Progreas Roport Serial No. M.E8. O.S.R.D. 1289	8.R. 7/3881	Marct, 1043
172	The Evaluation of Welding Prooedure and Technique in terme of Ballistic Testa. Part I.-Woldability of Commercial Armour Plate	G. S. Mikhakapov	Progress Roport Serial No. M.45. O.S.R.D. 1186	8.R. 7/3781	January, 1943
173	Wave Propagation in a Uniform Bar whoee Strese-Strain Curvo is Concavo Upward	M. P. White and	Armour and Ordnance Repoirt No. A-162 O.S.R.D. 1302	8.R. 7/3798	March, 1943
$\overbrace{00} 174$	The Influence of Impact Velocity on the Tensile Properties of Plain Carbon Steels and of a Cast-Steel Armour Plato	P. E. Duwez, I. S. Wrod and D. S. Clark	Progress Report No. A-164. O.S.R.D. 127	8.R. 7/4016	March, 1043
175	Ballistio Teats of S.T.S. Armor Plate, using 37 mm . Projoctiles	Ballintic Rebearch Group, Princeton University	Armor and Ordnance Roprort No. A. 150. O.S.R.D. 1301 Leport No. A.I56.	8.R. 7/3978	Maroh, 1943
178	The Force Produced by Impact of a Cylindrical Redy	M. P. White	Armor and Ordnance Report No. A-157. O.S.R.D. 128	8.R. 7/4077	March, 1943
177	Faotors influencing the Propagation of Plastio atrain in Long Specimens	P. E. Duwur, D.S. Clark and D.S. Wood	Prontess Roport No. A-150. O.S.R.D. 1304	8.R. 7/3wis	March, 1043
178	Secound Progress Roport on Plastio Doformation of Steel under High Presaure	P. W. Bridgman	Armor and Ordnance Report No. A-162 O.S.R.D. 134	8.R. 7/4199	March, 1043
179	The Testing of Metals in Compresaion at High Rates of Strain	F. Scitz	Armour and Ordnance Kiport No. A. 174 O.S.R.D. 1388	S.R. 7/4191	April, 1943
180	The Examination of Spark Photographe of 2-pr. Shot for Evidence of Set.Up. Road Research Lab.	-	D.S.I.IR., R.R.L., M.o.S.	m.0.S./280/T.L.	August, 1943
181	Plastic Waves in Compression, including the Stopping Procesa for a Cylindrical Slug atriking a Rigid Plate	E. H. Lee	a.r.d., o.b.	A.P.P. Corord. Subl. Comi. l'sper No. 67	Junc, 1143

No.	Twile	Authera	Iasuink anthurity	Tufursme	Dato
$1 \mathrm{H}_{2}$	Shatter Diagram for 2-inch 3 lb . and 5 lb . A.P. Shut	E. A. Milne and N. Hincheliffe	A.B.D., o.e.	A.B.D. Rept. No. 32	August, 1943
183	The Penotration and Perforation of Targets by Bembe, Shell and Ircogular Fragments	A. G. Walturs and L. Rosenherad	m.o.s., P.d.e.	P.D.E. Rept. 1443/60	October, 1943
184	Report on S.T.A.M. Trial No. 129	-	s.t.a.m.	-	October, 1943
145	Statitical Analysis of Armor Plate Data-Report No. 1	A. Bmown and P. J. Stanley	Advisory Sorvice on Quality Control	Teah, Ropt. Sories E. Q.C./E. 3	Fobruary, 1943
186	Relation between Cliemical Anslyais and Ballistio Limit for Armour Plate	A. Brown and	A.s.e.c.	Tech. Ropt. Series E.4NO. Q.C./E/3 Part III	-
187	Rolation between Plate Thicknose and Assessed Ballistic Limit for Pleko Tested between January and May 1943 inolusive	P. J. Stanloy	A.s.q.c.	Tech. Kupt. Series E.4NO. Q.C./E./3 Part IV	July, 1943
188	Examination of Thin Armour Plate made in France for Gerinans	-	A.R.D. Woolwich	Met. Report 703/42	November, 1942
188	An Exauination of a 53 mm . Beardmore Comented Arinour Plato No. 1233 T	-	A.R.D. Woolwich	Met. Report 712/42	November, 1942
-190	Ponetration of Steel under Static and Dynamic Conditions-Part XII	C. O. Raines	A.R.D. Woolwich	T.B. Report No. 3/43	Soptember, 1943
101	Surmary hoport on the Behaviour of Armour at low Tomperaturea	J. T. H. Turuer	D.t.D	Report No. M. (1088A/1 No. 1 Armour Branch	May, 1043
102	Ihyort on Low Temperature Trintu on British Plut: in Candia, 1942-3	J. T. H. Turnor	1.t.D.	Report No. M. (4)88A/2 No. 1 Armour Branch	Soptoultur, 1943
193	Ballistic Quality of Armour from German Tank Pz. Kw. VI	II. Hurrie Jones	d.t.D.	Report No. M: 6816A/2	June, 1943
194	Punching Teata with Flat and Ogival Punches	-	Work by English Steol Corporation, Lid.	Serial No. T. E./255 Met. and Hes.	Augut, 1943
195	The Plysics of Arinour Penetration	-	Impt. of Mines and Resonirves, Ottawa	$\begin{aligned} & \text { Ore Dreasing and Met. } \\ & \text { Lab. Inventigation No. } \\ & \mathbf{1 3 4 6} \end{aligned}$	January, 1943
198	Dominion Foundrica and Steel 00 mm . Armour Plate: Final Reports on Correlation between Chemical and Physical Testa and Balliatic Limit	-	Dopt. of Mines and Hesources, Ottawa	$\begin{aligned} & \text { S.R. } 7 / 734 \\ & \text { Ore Dreasing and Mot. } \\ & \text { Lab. Invest. } 1400 \end{aligned}$	May, 1943
197	A Mothod of Measuring tho Critical Velocity for Penetration of Armour Plato	M. R. Mc Phail	P.D.E. Vallartier, Quebee	-	January, 1943
108	at Normal The Effoct of the Shape of the Head of A.P. Shot on Critical Volocities for Penotration at Normal	M. R. MacPhail	P.D.E. Valcartier, Queboo	-	May, 1943

No.	Title	Authors	Imening suthority	Reference	Date
198	Dotermination of Critioal Volooitiee for Penetration of Armour Plate	M. R. MaoPhail	Inspection Board of Unitod Kingdom of Canada	-	July, 1943
200	Eramination of Australian Rolled Armour Plate. A.B.P. 3	H. W. Wermer	Counail for Scientifio and lad. Koo. Div. of Ind. Chemistry	8.R. 7/43/428 Physioal Met. Beotion Note No. 1	August, 1843
201	Arsenal) A Study of the Meobanism of Penetration of Homogeneous Armour Plate. (Watortown	E. L. Roed and S. L. Kruegel	Work for Ord. Dept. U.B.A. W.A. Roport No. 710/197	8.R. 7/3918	January, 1943
202	Correlation of Mlarostruoture and Ballistio Properties of Armour Plate	E. L. Reed and B. L. Kruegel	W.A. Report No. 710/281	8.R. 7/3919	July, 1943
203	Correlation of Miuroetructure and Ballistlo Propertles of Armour Plate. Part II-Face Hardened Plate	E. L. Reed and B. L. Kruegel	W.A. Report No. 710/281/1	8.R. 7/3920	Oothber, 1943
204	A Preliminary Study of the Ballistio Properties of Flame-Hardoned Armour Plate	E. L. Reed and B. L. Kruegel	W.A. Report No. 710/365	8.R. 7/3921	April, 1943
208	Further Studiee of the Meobanisn of Penetration of Armour Plate	A. Hurlioh	W.A. Report Do. 110/451	8.R. $7 / 3023$	July, 1043
\& 208	High Speed Testing. A Critique of tho Measurementa of tho Stress-Strain Relation at High Speeds	J. H. Hollomon and C. Zener	W.A. Report No. 112/25	S.R. 7/3922	July, 1943
207	Investigation of the Ballistio Properties of a Laminated Armour Assembly Submitted by Colonel H. W. Miller of the University of Michigan	J. Sullivan	W.A. Report No. 710/484	8.R. 7/4722	March, 1943
208	Proof Firing of Three-inot Ammour Piercing Stot with Differont Contours	F. Seitz	Frankford Arsenal Report No. R-255	8.R. 7/4339	November, 1942
209	A Study of Armour Piarcing Cores and the Phenomena of Armour Penetration by Meane of High Speed X.Ray Photographs	E. R. Thile	Frankford Arsenal Report No. R-273	8.R. 7/4254	February, 1943
210	Armour Penetration by Uranium and by Tungsten Bulleta. First Report	C. W. Hudson, E. R. Thile and H. W. Euker	Frankford Armenal Report No. R.274	8.R. 7/4484	March, 1843
211	Development Test of Low Alloy Stoel	-	Aberdoen Proving Ground Report No. A.D. 32	8.R. 7/4620	March, 1843
212	Survey of the Limit Velooity Performenoe of Standerd Calibre 50M2 A.P. 20 mm . A.P. M75 and 37 mm . A.P.C. MBI Projectiles against Thin Homogeneous Plate	J. Leoder	Ball. Rean. Lab. Momo. Rept. No. 132. A.P.G.	8.R. 7/4684	Maroh, 1943
213	Penetration of Mild Steel by A.P. Type Projeotilee	J. Loedor	Ball. Rea. Lab. No. 144	8.R. 7/4531	April, 1943
214	The Effectiveness of Light Armour as a Proteotion againat Flak	H. M. Morse	Tech. Div. Service Branch Ball. Sect. Office of Chief of Ordnance U.B.A.	8.R. 7/4745	Marolh, 1943

No.	Tille	Allhors	Imuinu authorty	Heframeo	Dato
215	Eleventh Partial Report on Light Armour	-	Wark by U.S. Navy Dept. N.I.G. Dahlyren. Heport No. 0-2088	8.R. 7/4623	May, 1943
216	The Penetration of Homogeneous Light Armour by jacketed Projeotilea at Normal Obliquity	, -	$\begin{aligned} & \text { Bureau of Ordnance U. } 8 . \\ & \text { Navy. N.P.., Dathren } \\ & \text { Report No. 14-43 } \end{aligned}$	-	July, 1843
217	Progress Explosion Test for Wolded Armour Plato	w. c. Snelling	N.D.R.C.	S.R. 7/4200	April, 1943
218	Non-Ballistio Test for Armour Plato	$\begin{gathered} \text { M. Gensmer, C. S. } \\ \text { Barrett and R. F. Mebl } \end{gathered}$	O.S.R.D. 1385-Serial No. M.69. Special Report	S.R. 7/4207	April, 1043
219	Preliminary Report on Defleotion and Perforation of Steel Plates at Impact Velocities up to 150 fl ./sec.	P. E. Duwez, D. s . Wood and D. B. Clarle	Armour and Ordnance Dept. No. A. 176 O. O.S.R.D. 1402	8.R. 7/4395	April, 1943
220	Flame Hardening of Homogeneous Armour Plate: Effent of Flame Hardening on the Ballistio Properties of Pro-Heat Treated Homogeneous Armour Plate	P. E. Kyle	Progress Report Serial No. M-69. O.S.R.D. 1409	8.R. 7/4324	May, 1943
$0{ }^{221}$	Impmement of Iow Alloy Armour Steels	$\begin{gathered} \text { C. H. Lorig, P. C. } \\ \text { Rosenthal, M. C. Ud, } \\ \text { A. R. Elea, G. G. P. } \\ \text { Krumleaf and } \\ \text { G. K. Manning } \end{gathered}$	Sorial No. M. 77 Progreas Report O.S.R.D. 1418	8.R. 7/4382	May, 1043
222	The Effect of Cold-Working on the Ballistio Properties of Steel Plate	c. W. Bridgmen	$\begin{aligned} & \text { Armour and Ordnance } \\ & \text { Report No. A.177 } \\ & \text { O.S.R.D. } 1429 \end{aligned}$	8.R. 7/4330	May, 1943
223	Weldability of Commercial Armour Plato: The Infuence of Thermal Strees Relief on the Hardnees of Five Types of $1 \mathbf{i}$ inch Rolled Armour	R. H. Aborn and R. E. Brian	Progrese Report Berial No. M.73 0.S.R.D. 1468	8.R. 7/4772	May, 1843
224	Aluminium Alloy Dynamio Tests of the Tensile Propertices of S.A.E. 1020 Steels, Arnico Iron and I78.T. Aluminium Alloy	$\begin{aligned} & \text { P. E. Duwez, D.S. } \\ & \text { Wood and D. S. Clark } \end{aligned}$	Armour and Ordnance Roport No. A. 182 O.S.R.D. 1400	S.R. 7/4401	May, 1043
225	The Influence of Impect Velocity on the Tensile Properties of Clane B Armour Plate. Heat-Treated Alloy Steels and Stainlewa Strele	$\begin{aligned} & \text { P. E. Duwez, D. S. } \\ & \text { Wood and D. S. Clark } \end{aligned}$	Armour and Ordnance Report No. A. 195 O.S.R.D. 1641	8.R. 7/43/284 ${ }^{\text {' }}$	July, 1943
${ }_{228}$	Correlation of Mutallogrephio Structure and Hardness Limit in Armour Plate: Par I.Effects of Austenite Transformation Producta on Ballistio Propertica ,	$\begin{gathered} \text { C. H. Lori, A. R. } \\ \text { Eloea, P. C. .Wsenthal } \\ \text { and G. K. Manning } \end{gathered}$	Final Report Series No. M-118. O.S.R.D. 1698	8.R. 7/49/337	Augut, 1943
227	The Behaviour of Longitudinal Streas Waves near Discontinuities in Bara of Plastio Material	Le V. Grifitis	Armour and Ordnance O.S.R.D. 1780 Heport No. A-212 O.S.R.D. 1789	S.R. 7/43/739	September, 1943

No.	Thlo	Authens	Imadue enthurlity	Inforaium	Dala
228	Discussion of Energy Measurements in Tension Impart Teets at tho Californis Institute of Teohnology	P. E. Duwee, D. 8. Wood and I. B. Clark	Armour and Ordnance Hoport No. A. 217 U.B.R.D. 1829	S.R. 7/43/740	Soptomber, 1943
229	Plastio Deformation of Steel under High Pressure	D. W. Bridgman	Armour and Ordnanoo Heport No. A-218 ©.B.R.D. 1868	8.R. 7/43/1025	September, 1943
280	Correlation of Motallographio Struoture and Hardnoss Limit In Armour Plato: Part IICorrelation of Miorostruoture and Ballistio Propertien. Part III-Analynea of Probloms premented by Individual Producers	C. H. Lorig A. R. Hiser, G. K, Manning and P. C. Rooentha	Final Roport Eorial No. M-154. O.B.R.D. 1049	8.R. 7/43/1228	Ootober, 1043
231	Examination of Enomy Material; Motallurgioal Study of Two Samples of Japanese Welded Light Homogenooun Armour	H. W. Gillott, A. S. Hendercon, L. H. Grenoll, J. Dunleavy and J. R. Cady	Progroes Roport Gerial No. M-169. O.B.R.D. 1968	8.R. 7/43/1108	Ootober, 1943
232	On the Statio and Dynamio Pleatio Bending of Pleters	D. H. Hyers	Arminur and Ordnance Report No. A-228 O.S.R.D. 2018	8.R. 7/4/8/82	Novomber, 1043
233	Non-Ballistio Teat for Armour Plate	M. Genemer, O. B. Barrott, A. B. Weat erman J. Vajde and R. F. Mohl	Final Report Series No. M-87. O.D.R.D. 2041	8.R. 44/15	November, 10:3
234	The Reantions of Thin Beame and Slebs to Impeot Loeds. Part I.-Goworal Theory Part II.-Beams	H. P. Roberteon and R. J. Sluta	Interim Roport Chiof EnggU.S. Army by the Com. mittce un Pesaive Proteotion against Bombing 1041 -42 Nos. 13 and 14	8.R. 7/3762 and 3763	$\text { Juno, } 1045$
235	Comparisan of 0-30 Calibre A.P. Cores under Comparator Miorosoope	-	British Admiralty Dolo. cation: Platio Armour Division: Hef.: 10/3/A.H.L./1/43	8.R. 7/4129	Jnne, 1943
238	Comparison of British Steel Proteotive Plating with Amerioan S.T.S. Plating	-	British Admiralty Dolesation: Plastio Armour Divinion: Rof.: 6/2/A.H.L./12/42	S.R. 7/4131	Decomber, 1942
237	Armour Penetration	Martinevsky	Wehrteohnincha Monat. abefto Tranalated by Bohool of Tank Teobnology	-	November, 1042
238	Note on the Collision of a Plastio Cylinder with a rigid Obstaole	F. G. Friediander	-	A.P.P. Do-ord Sub. Com. Paper No. 68	Maroh, 1944

No.	Title	Authors	Issuing authority	Heferenco	Date
239	Head on Motion of a Cylindrioal Projectile Subjent, to a Ihetarding Furee of the I'momelet. Tvie	V. Inajnink y	Hoosat oh and tiap. Jople.	,	Apil. IOAt
240	Hitugs wath Lubricatud Bhat	O. O. Bainea	A.R.D. Woolwioh	T.B. Report 9/43	Devember, 1043
241	The Effect of the Burface Finish of the Ogive on the Performanoe of A.P. Shot	a. O. Baines	A.R.I. Woolwioh	T.B. Report 11/43	Densmber, 1i43
248	The Analysia of tho Plastio Doformation in a Cylinder of thut Stool Striking a Rigid 'iarget	E. H. 100 and 8. J. Tupper	A.R.D. Woolwh	8.T.A. Heport No. 4/44	Jenuary, 1043
243	Penetration of Armour by High Velocity Projectilea and Munroe Jeta	R. Hill, N. F. Mott and D. C. Paok	A.R.D. Woolwleh	8.T.A. Heport 13/44	March, 1943
244	The Perforation of Armour by A.P. Projectilee Part I.-Steel Projeotiles	D. Btockdale and V. K. W. Duff	Behmol of Tank Technology	-	January, 154
245	The Effect of Low Temperature on the Bullet Resisting Properties of Armour Plate	-	M.A.P. Orfordness Resoarch Station	O.I.D. Hef.: F.T. 308	September, 1943
\% 246	A New Method of Determining the Projeotile Penetration Resistance of Armour Plate	-	Dept. of Mines and Regourcers, Ottawa. Ore Droweing and Mot. Lab. Invertigation No. 1587	S.R. 7/44/644	December, 1943
247	Terminal Balliatics and Explosive Effecte	-	N.R.C.	S.R. 7/44/1334	October, 1943
248	Types of Failuro Ocourring in the Shock Test of \boldsymbol{j} inch Homogeneous Armour with Calibre 0.50 A.P. Projeotiles	-	Ondnance Dept. U.S.A. Watortown Arsenal	S.R. 7/43/kO8 Rolled Armour Repr. No. 4	March, 1042
249	First Roport on Tension Teste under Proseure for the Watertown Arsenal	P. W. Hridgman	W.A. Rept. No. 111/7	8.R. 7/43/1201	March, 1943
250	Socond Report on Torsion Experimenta for the Watertown Arsena	P. W. Bridgman	W.A. Hept. No. 111/7-1	S.R. $7 / 43 / 1292$	Maroh, 1943
251	The Effect of Pre-atraining in Tension on the Behaviour of Steel under Tension, Tongion and Compreesion	P. W. Bridgman	W.A. Rept. No. 111/7.2	8.R. 7/43/1293	July, 1943
252	Development of a Fracture Teat to Indicate the Degree of Hardening of Armour Steole on Quenching	A. Hurlich	W.A. Rept. No. 710/532	8.R. 7/43/848	August, 1943
253	Armour Plato-Kolled, Ballistio and Motallurgical $1 \ddagger$ inch S.A.E. 1035 Rolled Homogeneous Armour Plate	E. L. Reed	W.A.	S.R. 7/43/1170 Eip. Rept. No. W.A.L $710 / 648$	October, 1943
254	Principles of Projeotilo Desiga for Penetration. Firat Partial Rept.	C. Zener and R. E. Pelorgon	W.A.	$\begin{gathered} \text { 8.R. } 7 / 44 / 123 \\ 762 / 321 \end{gathered}$	Ootobar, 1903
256	Tensile Stress-Strain Curves	J. E. Hollomom	W.A.	Rept. No. 630/7-1	November, 1843

No.	Tille	Anthom	Ieuniuk nuthurty	Infromum	Dato
250		-	A.P.G. Ropti No. A.D.	8.R. 7/4//778	Docember, 1942
257	To Dotermine the Effeot of the Rellistio Properties of 1 inoh Cast Homogoneous Armour	-	P.(3. Rept. No. A.D. 380	8.R. 7/44/14	May, 10-3
258	To Dentermine the Effeot of Plate Size and the Method of Support on the Rosistanoe to Penetration of t inch end inch Holled Homogoneous Armour with Cal. 0.30 A.P.M. 2	-	A.P.G. Rept. No. A.D.-627	8.R. 7/4/1119	June, 1943
288	Improvement of Present Method of Mensuring Plate Thioknessees for Rollistic Teerts	-	A.P.C. Rept. No. A.D. 683	8.R. 7/4//116	-
200	Ballistio Teats of Rolled Homogeneous Armour (mado from N.E. 0430 Steel) under Specification A.X.8. 496-2 and A.X.S. 711	-	A.P.C. Rept. No. A.D.-877	B.R. 7/4/3/308	Soptomber, 1943
281	Shock Teat Balliatio Limits on Four inch, Twenty inch and Four A inch Facohardened Platos	-	A.P.G. Rept. No. A.D. \quad. 338	8.R. 7/4/309	August, 1943
282	Tenth Partial Report on Light Armour	-	$\begin{aligned} & \text { U.S. Navy Dept. N.R.L } \\ & \text { Rept. O-1892 } \end{aligned}$	8.R. 7/43/10:5	June, 1942
263	The Mechanics of Armour Perforation. III. Resisting Forco During the Penatration Cycle	H. P. Robertson	Armour and Ordnance Report No. A-211 O.S.R.D. 1788	8.R. 7/43/1197	October, 1843
284	The Meohanice of Armour Perforation. 1. Reaidual Velocity	H. P. Robertson	Armour and Ordnance Hept. No. A-227 O.S.R.D. 2043	8.R. 7/44/704	November, 1943
285	The Effects of Flame Hardening on the Ballistio Propertien of Pre-Heat Treated Homogeneous Armour Plate	P. E. Kgle	Progreas Rept. Serial No. M-167. O.S.R.D. 2050	8.R. 7/44/363	November, 1943
288	Distortion of an Armour Plate under Simple Compreasive Streas to High Strains	P. W. Bridgman	Armour and Ordnanoo Ropt. No. A-238 O.S.E.D. 3019	8.R. 7/44/1288	Docember, 1843
287	Inveatigation of Borm in Armour Plate. Influenco of Boron and Chromium on some Propertiew of Fixperimental Stcela containing 0-3 per cent. Carbon and $0.8,1.25$ or 1.6 per cent. Manganese	T. C. Digges and F. M. Koinhandt	Progrems Report Berial No. M-174. O.S.R.D. 3020	8.R. 7/4/388	Deoember, 1043
268	The Infuence of Specimen Dimensions and Shape on the Resulte of Tensile Impant Teets	D. A. Wood, P. E. Duwez and D. S. Clark	Armour and Ordnance Roport No. 237 O.S.R.D. 3028	8.R. 7/44/1263	Docomber, 1943
269	Final Report of the Uee of Speoial Non-Alloy Stoels for Armour Pieroing Capped Shot: (0.D.107)	J. S. Jeckeon, D. P. Baswell, C. Fisher and R. B. Schenok	Progress Report Sorial No. M-185. O.S.R.D. 3110	8.R. 7/4//688	January, 1944

No.	Titio	Authors	Issuing nuthority	Roferanse	Sate
276	Natimal Limatgollay Ntaola and a Manganese Ntorel	ID. N. (imah, I'S Duwez and IJ. © Wood	Armour mid Ordianive Hopmil No. A-241 O.S.R.D. 3180	B.1. 7/44/050	Jànuary, 1044
271	Preliminary Experiments on the Propagation of Plastio Strain in Tenaion	I. E. Dawaz	Armour and Ordnance Heport No. A-244 O.S.R.I). 3207. (Rovision of heport No. A.33)	8.R. 7/44/875	Jenuary, 1944
272	The Streas Wavea Producod in a Plato by a plane Pressure Pulso	J. B. Komehter and F. Seitz	Armour and Ordnance Report No. A-245 O.S.R.D. 3230	8.R. 7/44/1048	February, 1044
273	The Influence of Impact Velocity on the Tensile Properties of Four Magnosium Alloys and 24Ṣ Aluminium Alloy	D. S. Clark, P. E. Duwez and D. S. Wood	Armour and Ordnance IReport No. A-249 O.S.R.D. 3256	8.R. 7/44/837	February, 1944
274	High Speed Compression Tests of Copper Crueher Gauges and Sipheres	C. C. Simpaon, E. L. Firman air J. S. Kochler	Armour \& Ordnance Rept. No. A-257 O.S.R.D. 3330	S.R. 7/44/1205	March, 1944
275	The Set Added to Compreasion Cylindera After Impect	E. L. Firmen, J. B. Korbler and F. Seitz	Armour \& Ordnance Rept. No. A. 258 O.S.R.D. 3331	8.H. 7/44/1371	March, 1944
276	Nitrugen on Some Propertios of Exporimental Stoels With and Without Boron	T. G. Diggea and F. M. Keinhardt	Prorreas Ropt. Serial No M.23I. O.S.K.D. 3378	8.R.7/44/1240	Maroh, 1944
277	Effects of Flame Hardening on the Ballistic Properties of Pre-heat Treated Homogeneous Armour Plate	E. L. Bartholomew, Jnr., M. S. Burton, F. R. Evane and R. S. Williame	Progroas Ropt. Serial No. M-233. O.R.S.D. 3416	S.R.7/44/1318	February, 1944
278	The Infuence of Impart Velooity on the Tensile Propertiee of Three Types of Ship Plate: M.S., H.T.S., S.T.S.	D. S. Clark, P. F. Uuwez and D. S. Wrod	Armuir \& Ordnance Kept. No. A-261 O.R.S.D. 3420	S.R.7/44/1515	March, 1944
270	First Ieport on Improvement of Low Alloy Armour Stcel (OD-87): Part V. The Effect of Draw Practice on the Mechanical Properties of Six Armour Steels	C. H. Lorig, (1. P. Krumlauf, M. K. Barnett, P. C. Rosonthal and G. K. Manning	Progrese Rant. Serial No. M-245. O.S.R.J. 3423	S.R.7/44/1225	March, 1944
280	Progrese Report of Armour Plate and Law Alloy Steets ($00-85$): The Spot Wolding of Attachments to Homogeneous Armour	W. F. Hees, A. Muller and W. D. Doty	Progress Ropt. Serial No. M-215. O.S.R.D. 3433	8.1.7/44/1227	March, 1044
281	Errors in Residual Velocity Doterminations Using Magnetiard Shot	P. J. Higg	D.S.I.R., N.P.L.	Papor No. 62 A.P.P. Co-ord. Bub-Com.	January, 0044

No.	Title	Authors	Issuing suthority	Heferenos	Dato
2 N 2	Ibliosalli.t	A. F llown		Pojimy No. 4:0. 	Ifolin inarv. 1164
283	Measurement of the Deceleration of a Bbot Penetrating Arnour Plate	-	K.K.L., M.O.B.	M.0.8./30/T.L.W.J.O.s.	December, 1943
284	Seventeenth Interim Report on Conorete for Defence Work-The Effect of Beational Iknsity on the l'enotration Into Concrote of Armour-pierding Shot and the Derivation of a Ctoneral Penetration Pormula	-	M.o.s.	M.O.s./311/A.C.W.	February, 1944
285	Further Measurements of the Deceleration of 2-pr. Shot Attacking 41 mm . Armour Plate	-	M.O.S.	M.0.8./325/W.J.0.s.	March, 1944
288	The Elementary Theory of Shatter Diagrams in the Attack of Armour	E. A. Milne	0.13.	Paper No. 68. A.P.P. Co-ond. Mub-Com.	May, 1944
287	Notes on Proof of Piercing Shell	R. Beeching	O.B.	O.B. Proc. No. 27,858	
288	Notes on Composition of A.P. Shot Steel	-	M.o.s.	B.T.A.M. Memo. No. 18	
280	Fracture of Duotile Motalo	N. Mott	A.R.D.	8.T.A. Rept. No. 4/43	November, 1943
88	A Burvoy of R.A.E. Reporta Dealing with Stress Wavea in Balloon Barrage Cablea Due to Tranaverse Impaot	E. H. Ien	A.R.D.	8.T.A. Memo. No. 4/44	
291	Comments on N.R.L. Report No. O-2275, "The Longitudinal Vibratione of a Projectile during Armour Penetration"	E. H. Leot	A.R.D.	8.T.A. Memo. No. 9/44	June, 1044
292	Static and Dynamic Experiment with Capped Bhot	G. O. Bainos	A.R.D.	T.B. Report No. 7/A4	March, 1944
203	Penctration of Steel Under Statio and Dynamic Conditions-Furthor Experiments on the 2-pr. Scale	c. O. Balnes	A.R.D.	T.B. Heport No. 8/44	March, 1944
294	Armour Iisposition Civing High Protection with Small Weight	C. A. Adamb, 1R. H. Calvert, H. F. Hilla and J. Vonnart	A.R.D.	T.B. Roport No. 0/44	March, 1944
205	The Mechaniam of Shatter-Part II-The Time Fuotor in Shatter Behaviour	C. A. Adams	A.R.D.	T.B. Report No. 14/44	April, 1944
206	Note on Shatter of Shot at Normal Impact: Effect of Hardness of Plate	H. R. Calvert and J. Vennart	A.R.D.	T.B. Report No. 15/44	June, 1944
207	Comparison of Static and Dynamio Partial Penetration of Arnour Plato by 2-pr. Shot	G. O. Baines	A.R.D.	T.B. Report No. 20/44	July, 1944
208	The Iongitudinal Motion of a Shot During Armour Penetration With Special Reference to N.R.L. Report O-2275	C. A. Adama	A.R.D.	T.B. Report No. 23/44	August, 1044
200	Note on R.R.L. Paper No. M.0.S./326/W.J.O.S.	G. O. Baines	A.R.D.	T.B. Heport No. 28/44	August, 1944

No.	vilo	Authurs	Isanuag authurity	Heloratue	Dato
315	Final Report of the Use of apecial Non-Alloy Stools for Armour Piercing Capped Shot (O.D.-1(17): P'art II.-Keaulta of Eirnerimental Work directad towarda I'roduction of a I'rojectilo poeseasing superior Ballistic Propertiea	$\begin{aligned} & \text { J. S. Jacken. D. P. } \\ & \text { Buahwoll. C. F. Fisher } \\ & \text { and I. B. Schenck } \end{aligned}$	Final Report Serial No. M-250. O.S.R.D. 3683	8.R. 7/44/1808	April, 1944
316	Behaviour of Metals under Dynamic Conditions(N.O-11) (N.S.-100): Influenco of Impact Velocity on the Tenaile Properties of N.E. 8715, N.E. 9415, S.A.E. 1045 and S.A.E. 1090	D. S. Clark, P. E. Duwez and D. S. Wood	Progrona Report Serial No. M-257. O.S.R.D. 3695	8.R. 7//44/2027	May, 1944
317	Behaviour of Metala under Dynamic Conditions (N.O.-1I) (N.S.-109): Influence of Velocity on the Tensile Properties of some Metala and Alloys	P. E. Duwez and D. S. Clark	Progress Roport Scrial No. M-288. U.S.R.D. 3837	S.R. 7/44/2268	June, 1944
318	The Propagation of tho Plastio Zone along a Tension Bar of a Metal having a welldefined Plastio Limit	J. Miklowitz	Armour and Ordnance Report No. A. 28 O.S.R.D. 3864	8.R. 7/4//2869	July, 1044
310	Behaviour of Metals under Dynamic Conditions (N.S.-100): Tho Propagation of I'lastic Strain in Compression		l'rogrese Roport Serial No. M-302. O.S.R.D. 3880	8.R. 7/44/2481	July, 1944
330	Hehaviour of Metals under Dynamic Conditions (N.S.-109): A Proliminary Inviwtigation of the Mechanisim of Penetration from the Btandpoint of Strain Propagation	P. E. Duwuz and D. S. Clark	Progreap Roport Serial No. M-317. O.8.R.D. 3987	8.R. 7/44/2066	July, 1944
C 321	Effect of Flame Hardening on the Ballistio Properties of Pre-heat Treated Homogeneons Armour Plato	$\begin{gathered} \text { E. L. Hartholomew, } \\ \text { Jr., M. S. Burton, } \\ \text { F. R. Evane, I'. E. } \\ \text { Kyle and } \\ \text { K. S. Williams } \end{gathered}$	Final Hoport Serial No. M-329. O.S.R.D. 4110	8.R. 7/44/2935	Soptember, 1944
322	The Use of Thin spaosed Plates of Armour Plate and Mild Steel to Slop 0.303 inoh A.I'. Shot	-	D.S.I.R., R.R.L., M.O.8.	$\begin{aligned} & \text { м.O.S./367/K.K.L.C.F. } \\ & \text { D.B.W. } \end{aligned}$	June, 1044 '
323	Report on Armour Plato 1943	A. M. Walker	m.o.s.	Tech, Roport Sorics "E" No. QC./E/G	July, 1044 '
324	The Perfurmance aguint Homo-Hard (IT.7.70) Plate of Heavy Alloy Coreen	J. T. Harris	A.R.D.	T.B. Roport No. 17/44	June, 1944
325	The Application of Static Penetration Data to the Calculation of Compreseive Stresses in Sihot or Shell during Penotration	G. O. Bainod	A.R.D.	T.B. Roport No. 21/44	June, 1944
328	The Teohnique of Multiple Spark Photography Applicd to Problems in Torminal Ballistics. Part 1.--The Penetration of Armour by A.P. Shot with different Hardness Distributions	$\begin{aligned} & \text { H. R. Calvert and } \\ & \text { J. Vonnart } \end{aligned}$	A.r.D.	T.B. Roport No. 28/44	December, 1944
327	The Effectiveneas of Thin Steol Platea in Stripping the Piercing Cape from A.P.C. and A.P.C.B.C. Projectiles	$\begin{aligned} & \text { J. T. Harria, } \\ & \text { G.O. Baines and } \\ & \text { I. E. Brickoll } \end{aligned}$	A.R.D.	T.B. Keport No. 29/44	Ootwiner, 1984
328	Firat Iloport on Three Plate Arrangement to defeat 2-pr. A.P.C.B.C. Shot by the Inclusion of Decapping and Shattor Platea	J. D. Thorn	A.R.D.	T.B. Report No. 30/44	September, 1044

No.	Tilim	Authum	Inouing awithority	Neformuse	Dnto
329	On the Shatter of 2-pr. A.P. Shot on Thin, Hard, Oblique Plates	J. D. Thorn	A.h.D.	T.B. Ropt. No. 31/44	September, 1944
330	A Comparinon of Two 00 lb . N.C. Platom by Static Methols	O. O. Beinoe	A.R.I.	T.B. Rept. No. 32/44	Ootrober, 1944
331	Nute on the Comparative Performance of Canadian and British Mark 1 I.J. Cores in a Statio Teat	G. O. Baines	A.ll.D.	T.B. Rept. No. 34/44	October, 1944
332	German 7.6 cm . Pak 40 A.P.C.B.C. Shell	-	A R.D.	Met. Heport 129/44	June, 1944
333	To Determine the Performance of British 6-pr. A.P.C.B.C. Shot at Wide Angles of Allack and to Ascertain Whether Any Improvement Coutd Be Effectod by Alteration of the Standard Heat Troatment	-	A.R.D.	T.B. Report A.P. No.35/44	-
334	To compare the Performance of 8.pr. A.P.C. Shot With Penetrative Capp of 0.8\% C Steel With That of G-pr. A.P.C. Shot Fitted With Alloy Steel (S.T.A.21) Cape Against Homogeneoum I.T. 80 PYatos	-	A.R.D.	T.B. Report A.P. Nu.38/44 Part II	July, 1044
336	'To Determine Whether the Hardness Distribution in 20 mm . H.S. A.P. Mark 4 Shot Which Will Give the Inoweat Critical Velocity Agrainst Plate to Speoification I.T. 80 (280-330 Brinell) Will Also Give Optimum Performance Against Plate of I.T. 70 Quality (444-477 Brinell)	-	A.k.D.	T.B. Report A.P. No.38/44	August, 1944
833	Break-up Sbot on Thin, Oblique Plates	-	D.T.D.	Reprort No. M 6376, A/14, No. 1	June, 1944
137	Attack of I.T.80 Platea al High Anglen of Impact With Heavy A.P. Shot	-	1.T.D.	Report No. M 7000, A/16, No. 1	May, 1044
338	Merhaniem of Armourt Pentetration. Third Partial Report	c. Zoner	Ordrancan IDept. U.8.A. W.A. Expt. Rept. No. W.A.L. 710/492-I	S.R. 7/44/1877 `	Maroh, 1944
839	Mechanlem of Armour Penetration. Fourll Partial Report	C. Zener	Ordnance Dept. U.B.A. W.A. Expt. Hept. No. W.A.L. 710/492-2	8.R. 7/44/3310	Angust, 1044
340	To Determine the Security of Cap Attachment and Armour Penetration Charaoteristics of 37 mm . A.P.C. Shot M. 51 With Crimped-on Cape	-	A.P.G. Kepts. Nos. A.D.P. 71 and P. 76	8.R. 7/44/717	Juno, 1943
141	Development of Ballistic Limit Detormination With One Shot	-	A.P.Q. Keport No. A.D.-153	S.R. 7/44/746	-
342	Fopport on the Ihexistance to Penetration of Dharalumin for Use in Conneotion With Current Design and Development of Gun Shields	I. W. Tiechman	$\begin{aligned} & \text { A.P.U. Heport } \\ & \text { No. AD- } 502 \end{aligned}$	8.R. 7/44/2228	November, 1843
343	Effect of Hardness on the Ballistio Propertive of \boldsymbol{A} inch- ${ }_{\text {dinch }}$ Homogeneous Armour	-	A.P.G. Repti. Nos. AD-603, 613, 510, 614, 629	B.R. 7/44/2000, 3209, 3440, 3526 and 3526	May-Juno, 1044

No.	Title	Authors	Issuing authority	Heference	Date
344	Ilardened Armour at Varying Obliquitioe With Cal. 0.31), (dal. 0.60 and 20 mm . Projoctiles	If. H. W.ilif		H.LI. 7/4/2130	Jaminery, IOHt
348	The Effect of Hardnees and Obliquity Upon the Ponotration Resistanoe of $1 \mathbf{d}$-inoh Caet Armour to 57 mm . A.P.C. M. 86 and 37 mm . A.P. M. 74 Projuctiles	-	A.P.(3. Rept. No. AD-630	8.1. 7/44/328I	May, 1944
	Report of the Ballistic Teet of 4 -inch Cast Homogenoous Armour Platea Submitted by General Steel Castinge Corporation	-	A.P.G. Rept. No. AD-058	8.R. 7/44/3282	April, 1944
	The Effect of Hardneas and Obliquity on the Ballistic Properties of 1-inch Cast Armour Submitted by labanon Steel Foundry	-	A.P.G. Rept. No. AD-683	8.R. 7/44/32A5	June, 1944
	The Fffect of Hardnese Upon the Reaistance to Penetration of 3 -inch Cast Armour Agsinst Armour Pierving Projectilea	-	A.P.G. Rept. No. AD-678	8.R. 7/44/3736	June, 1944
346	Penetration of Steel Spheree into Wood as a Funotion of Striking Velocity	-	$\begin{aligned} & \text { A.P.G. Res. Lab. } \\ & \text { No. } 462 \end{aligned}$	8.R. 7/44/2360	May, 1044
9^{347}	The Meanurement of Foroes Whioh Resist Penetration of S.T.S. Armour, Mild Steel and 24ST Aluminium	-	Work by U.S. Navy Dept. NRL. Rept. No. 0-2276	8.R. 7/44/245/4	May, 1944
348	Penetration of Faco Hardened Bullet Proof Armour by Solid Cal. 0.27 Bullet	-	NRL. Rept. No. 0-2290	8.R. 7/44/25A4	May, 1944
349	First Partial Roport on Projectile Shock on Aircraft Armour Supports	-	NRL. Rept. No. 0-2331	S.R. 7/44/2763	July, 1944
350	Penetration Mochanisms. I-The Penetration of Homogeneous Armour by Uncapped Projoctiles at 0° Obliquity	-	Dahlgren Rept. No. 1-43	8.R. 7/44/1303	April, 1943
351	The Effect of Nose Shape on the Halliatio Performance of 15 lb . 3 -inoh A.P. Solid Shot Againat Homogeneous Armour Hate	-	Dabligren Hept. No. 2-43	8.R. 7/44/3718	February, 1943
352	Penetration of Homogeneous Armour by 3-inch Flat-nosed Projectiles	-	Dahlgren Rept. No. 7-43	S.R. 7/44/3717	April, 1943
363	Penetration Muchaaiems. II-Supplementary Roport on the Penetration of Homogeneous Plates by Uncapped Projectilea at 0° Obliquity	-	Dahlgren Rept. No. 3-44	S.R. 7/44/1206	February, 1044
354	Penetration of Homogonoous Plate by 3-inch Flat-nowed Projectiles	-	Dahlgren Rept. No. 12-44	8.R. 7/44/2201	April, 1944
355	The Developmont of a Procers for Manufacturing and Welding Face Hardened Armour Plete	R. B. Schenok, J. B. Jeotron, D. P. Burwell and C. E. Fisher	N.D. L.C. Final Rept. Serial No. M-290. O.S.R.D. 3912	8.R. 7/44/2521	July, 1044
356	A Compilation of Informal Reports Submitted in Advance of Formal Heports (I6 Sop. to 15 Oct. 1944)	-	Ordnance \& Terminal Ballistics Ropt. No. OTB-3. O.S.R.D. 4258	8.R. 7/44/3605	October, 1944

N.	Tino	Antluor	Jasulinu aullurity	Unfoumion	Data
357	Behaviour of Metala Under Dynamic Conditions (NS-109): Mechanism of the Dymamic Performance of Melala	D. S. Clark, D. H. Hyern, D. B. Workl and P. E. Duwez	Progress Repl. Serial No. M-385. O.S.R.I. 4343	8.R. 7/44/3769	November, 1944
358	Effect of Locked-up Stresses on Ballistic Performance of Welded Armour. Part II (0D-106)	J. T. Norton, D. Rosenthal and 8. B. Malcof	Final Rept. Berial No. M-421. O.S.R.D. 4386	8.R. 7/45/40	November, 1944
368	Bohaviour of Metals Under Dynamio Conditiona (NS-100): Properties of Yielding	P. E. Duwoz, H. E. Martens and D. S. Clark	Progrose Rept. Serial No. M-409. O.S.R.D. 4453	S.R. 7/45/749	December, 1944
300	Thind Progrems Roport on the Investigation of Scale Effect in Armour Penetration. Firing Trials at Normal Attack with Geometrically-similar Shot Againat Homogeneous Armour of Varied Hardneas	A. F. C. Brown and V. M. Hickson	D.S.I.R., N.P.L.	Paper No. 79 A.P.P. Co-ord. Sub. Oom.	September, 1044
-0 301	Fourth Progrens IReport on the Investigation of Scale Effect in Armour Penetration. The Optimum Hardness of Homogeneous Armour for Resiatance to Perforation at Normal Atlack by Projectiles of Different Sizess	D. G. Sopwith	N.P.L.	Paper No. 8) A.P.P. Co-ord. Sub. Com.	Soptember, 1944
- 382	Fourth Report on an Inveatigation of the Mechanical Propertiea of Belected Armour Plate	P. J. Hikgs	N.P.L.	Paper No. 81 A.P.P. Coord. Bub. Com.	September, 1044
363	Comments on Naval Reeearch Lahoratory Report No. O-2263 "Velocity Lobs of a 1 inch Model Projeotile When it Penetrates 1/32 inch Cold-rolled Sheet Steel."	D. G. Sopwith	N.P.L.	Papar No. 83 A.P.P. Co-ord. Sub. Com.	Ootober, 1944
364	The Rallistio Properties of a Mild Steel at Normal Attack	D. G. Sopwith	N.P.L.	Paper No. 84* A.P.P. Coord. Sub. Com.	October, 1944
365	Report on the Vibration of A.P. Shot after Impact	V. M. Hickman	N.P.L.	A.P.P. Co-ord. Sub. Con. Paper No. 94	-
368	Report on Fiimg Trials with 2.pr. A.P.C.B.C. Shot againgt I.T.80D Quality Plate at Angles of Attack from Normal to 00 degrees	A. F. C. Brown and V. M. Hickman	--	A.P.P. Co-ord. Sub. Com. Paper No. 95	-
387	The Dynamic Compreanive Yield Strength of a Nickel-Chmme Stoe	-	R.H.L., M.O.S.	M.O.S./380/H.L.D.P.	August, 1944
388	The Elementary Theory of Shattor Diagrams in the Attack of Armour-Parta II and III	E. A. Milne	о.в.	A.P.P. Co-ord. Sub. Com. Paper No. 78	-
369	A Note on Struses and Momentum Curves when a Shot or Shell lorforatea a Plate	N. Hincheliffe	O.B.	A.P.P. Co.ord. Sul. Com. Paper No. 97	February, 1946
370	Ponetration into Wood	R. Hill and D. C. Paok	A.R.D.	8.T.A. Report No. 19/44	June, 1944

No.	Tillo	A.1.1...na	tautux authuntuy	Helleromis	Dalo
371	The Distribution of Streas in a Docolerating Elastio Sphere	W. R. Dean I. N. Siruddon and H. W. Parbon	A.R.D.	8.T.A. Report No. 33/4	June, 1944
372	Oavitation Pbenomenon in Duotile Materiala and the Dyriamio Trerm in the Reditance to Penetration	R. Hill	A.R.D.	s.T.A. Report No. 3/4	Augurt, 1944
373	The Problem of Disoing of Armour, Plate	1. N. Sneddon W. R. Dean and	A.R.D.	B.T.A. Report No. 36/4	Ausust, 1944
374	Proteotion in Alroraft againat 20 mm . A.P. Bullots	C. A. Adams, H. R. Calvert, H. F. Hill and J. Vernaft	A.R.D.	T.B. Roport No. 1/45	May, 1945
375	The Calculation of Shell Cavitios from the Basis of Statio Experiments	C. O. Bainees	A.R.D.	T.B. Report No. 2/40	January, 1945
378	An Investigation of Flaking in Tank Armour by Statio Punohing Methods	O. Rainees	A.R.D	T.B. Report No. 3/45	Marob, 1945
377	The Scale Effeot in Statio Ponetration	O. O. Baintes	A.R.D	T.B. Report No. 6/45	July, 1845
378	Noto on the Periormanoo of Spaced Tarsts againat Low Velocity Attaok	C. H. Hills C. A. Adama and	A.R.D	T.B. Report No. 8/46	July, 1945
379	Determination of the Functlon of Various Tharts of the Penetrative Cap of an Armour Piercing Capperl Shot in Defeating the Hardented Face of a Comientod Plato and in Preventing Shatter against Ifomogeneous Plate of Machineable quality	-	A.R.L.	T.B. Report No. 7/45	-
380	Tho Optitimum Callibro Longth (1/d) Ratio of Tungaten Carbido Coree	- -	A.R.D.	T.B. Report No. A.P. 12/45	April, 1845
381	Steela for Armour Pieroing Bullet Cored. A Review of their Heat Treatment, Magnetio Hardnees, Viokera Dlemond Hardnesa and Corralation of thoeo Physioal Propertios with B.A.A. Penetration of Standard Armour Plate	W. N. Hindley	A.R.D.	Mot. Report No. $68 / 45$	May, 1945
382	Gorman 75 mm . and 88 mm . A.P.C.B.C. Ammunition at Oblique 1 lmpact	-	d.t.d.	Report No. M.6914A/4 No. 1	-
343	Aitcraft Armour. An Emplitial Approach to the Efficient Design of Armour for Aircraft	J. F. Bullivah	Ordnance Depit. U.S.A. W.A.L. No. 710/506	8.R. 7/4/2994	Jatuaty, 1944
384	Temper Britteness in Cast and Rolled Armour Plato	-	W.A. Report No. W.A.L. 710/672	8.R. 7/44/1699	Deoomber, 1943
385	Principle of Armour Protection. Third Partial Report	-	W.A. Repmrt No. W.A.L. 710/607-2	S.R. 7/46/101	June, 1944
388	Third l'artial Report on the Balligtio Reaulta Oltained on Hollod Homogenoous Armour Subritted for Acceptance under Specification A.X.S. 488-1	-	$\begin{aligned} & \text { A.P.G. } \\ & \text { Report No. A.D./675 } \end{aligned}$	S.R. 7/46/2927	-

No.	Title	Authors	Iseuing authority	Reforenoe	Dato
9N\%		If. H. Welllo	$\begin{aligned} & \text { A.l'.(1. } \\ & \text { Report No. A.I. } 6 \text { OA } \end{aligned}$	B.1t. 7/41/373	May, 194
388	Shatter of Brine Quenched and Air Quenched Calibro 60 F.X.S. 318 Stool Cores	H. W. Fuker and T. A. Read	Frankford Arsenal Roport No. R-616	B.R. 7/45/3818	April, 1045
389	Penotration of Homogenewus Plate of One Tensilo Btrength (110,000 p.e.i.) by 3 inches M-79 Projectilen-l'artial Rejort	- .	U.S. Navy Dopt. Dahlyren Heport No. 8-44	B.R. 7/44/1908	April, 1944
390	Penelration of Homogenooun Plate by 3 inches 13.0 lb . Flat Nused Prujeotiles fitted with Windshields. Second Partial Report	-	Dahlgren Heport No. 19/44	8.R. 7/44/3468	July, 104
391	Penctration of Homogencous Plate of one Tensilo Strength (125,000 p.s.i.) by 3 inches M-79 A.P. Projeutiles. Bucond Partial Heport	-	Dahlgren Heport No. 20/44	8.H. 7/44/3653	July, 1944
302	A Compilation of Informal Reporta Submitted in Advanco of Formal Reporta (15th July to 15th August 1044) Capped I'rojectiles at Hyper-velocities	R. J. Emrich	N.D.IR.C. Ordnance and T.B. Report No. O.T.B.-1 O.S.R.D. 4077	B.R. 7/44/2958	August. 1944
319	A Compilation of Informal Keporta Submitted in Advanoo of Formal Roports (15th Octoler to 15th Novemher 1044). A BLatistical Study of the Shattor Velocity of Projectiles at Hyper-volocities	J. Emrich and A. M. Mood	Ordnanco and T.B. Hoport No. O.T.B.O.S.R.D. 4357	8.R. 7/46/78	November, 1944
3194	A Compilation of Informal Reports Submittod in Advance of Formal Roports (16th November to l5th December 1944) "Shatter" of Tungsten Carbido Projectilee	C. V. Curtis	Ordnance and T.B. Report No. O.T.B.- 5 O.S.R.D. 4477	B.R. 7/45/144	Deoember, 1944
305	A Compilation of Informal Reporta Submitted in Advance of Formal Reporta (15th January to 15th February 1045) Penetration Theory: Estimetion of Volocity and Time during Penetration	R. A. Beth	Ordnance end T.B. Keport No. O.T.B. 7 O.S.R.D. 4720	8.R. 7/45/1181	February, 1945
386	A Compilation of Informal Reporta Submittod in Advance of Formal Regorts (15th February to 15th March): Subcalibro Siteol Irojectiles	C. W. Curtis and 1R. J. Emrich	Ordnance and T.B. Hoport No. O.T.B. 8 O.S.K.D. 4829	8.R. 7/45/1477	Maroh, 1945
397	A (Dompilation of Informal Reporta Submittex in Advanes of Formal Reporta (I5th March to 15th April 1945): Oblique Impacts with Tungsten Carbide Projeotiles	C. W. Curtis	Ordnance and T.B. Report No. O.T.H.O.S.R.D. 4948	8.R. 7/45/1875	April. 1046
308	A Compilation of Informal Reports Submittod in Advance of Fornal Roporte (15th April to 15th May 1945): Effeot of Armour Piercing Cap on Porforation Limite	C. W. Curtis and R. J. Einrich	Ordnance and T.B. Heport No. O.T.B.- 10 O.S.R.D. 5094	S.R. 7/45/2199	May, 1945
300	High Velocity Terminal Hallistic Porformance of Calibro: 0.30 A.P.M. 2 Stoo Cores	Il. J. Emrich alid C. W. Curtis	Armour and Orinance Roport No. A-282 O.S.R.D. 3880	8.R. 7/44/2721	July 104

No.	Title ${ }^{\circ}$	Authorn	lesuling authorly	Referonco	Dato
(4)		J. Mhiluwitx	Hopirire No. A.ants O.S.E.D. 4612	8.16. 7/40/482,	January, 1445.
401	High Speed Comuroswion Testing of Copper Crusher Cellindera and Spherea II	G. H. Winslow and W. H. Beonoy	Mepor. No. A. 324 O.S.H.D. bose	8.R. 7/45/2191	-
402	Proliminary Tensile Testa with Threaded Apecimena on Is inch-Clase B Armour Sunel	R. M. Trimble and F. Coensgen	University of North Crogrolina Proges loport No. 19	B.R. 7/45/1271	January, 1943
403	Studies of Sizo Effect in Heavy Clase B Armour Steel	A. E. Ruark	$\begin{aligned} & \text { Univerally of North } \\ & \text { Cancolina } \\ & \text { Progose Rejort No. } 20 \end{aligned}$	8.R. 7/45/1272	-
404	The Penetration of Spherioal Projectiles into Cast Lead	-	o.S.I.R., R.R.L.	A.P.P. © orrl. Sub. Com M.O.S./422/H.L.D.P. A.O.I. Paper No. ${ }^{\text {B }}$	January, 1045
405	The Penetration and Limiting Dimensions of 1000 lb . Bombes of Various Calibres Striking Concrete Normally at 1500 ft./nec.	-	- .	A.P.P. Co-ord. Sub. Com M.O.S./409/H.L.D.P. Paper No. $\boldsymbol{\theta l}_{1}$	Ootoher, 1844
400	Determinations of the Force on a 2 :pr. Shot Penetrating Armour Plate from Deceleration Records	-	-	A.P.P. Co.ond. Sub. Com. M. $\mathbf{C} . \mathrm{S} . / 483 / \mathrm{W} . \mathrm{J} .0 .8$. Paper No. 108	Yebruary, 1948
407	The Theory of Indentation and Hardness Tests	R. F. Biahop. R. Hill and N. F. Mott	$\begin{aligned} & \text { M.O.S. } \\ & \text { A.R.D. Woolwch } \end{aligned}$	S.T.A. Repurt No. 41/4	October, 1944
408	The Theory of Wedgo Indentation of Ductile Matorials	R. Hill, E. H. Loe and 8.'J. Tupper	A.R.D. Woolwioh	B.T.A. Heport No. 10/45	April, 1045
409	The Analysis of Projectile Penotration of Non Forrous Ductile Matorials	Hill	A.R.D. Woolwich	8.T.A. Report No. 8/45	April, 1945
410	The Plane Prollem in the Mathematical Theory of Plesticity for the Caso of External Foreces A pplied to a Closed Contour	8. Caristianovitoh	A.R.D. Woolwich	S.T.A. Translation No.	August, 1945
411	The Infuenco of Hardness of Tiltod Platees	-	p.t.d.d.	$\begin{aligned} & \text { Materials Mranoh } \\ & \text { Relport No. M60 } 683 A / 16 \\ & \text { No. } 1 \end{aligned}$	Soptember, 1946
412	Dovise for Mosauring tho Accoleration of a shot whon it Strikes an Armour Plate	-	H.E.c.	$\underset{\substack{\text { No. } 695}}{\text { B.I.O.S. }}$	
413	Misoollanoous Penotration and Ballistio Data	-	H.E.C.	$\underset{\substack{\text { B.I.o.s./Gp.2/4.E.c. } \\ \text { No. } \\ \hline}}{ }$	

No.	TM10	Authors	Imawing anthority	Hesformuo	Date
414	Invortigation of Specific Impact Energiea of $1.3 \mathrm{~cm} ., 2.0 \mathrm{~cm}$. and 3.7 om . A.P. Projeotiles Firod Agsinst Armour Plate	-	н.e.c.	$\begin{aligned} & \text { B.1.O.B// } \text { pp }_{\text {p }}^{2 / 2 / \text { H.E.C. }} \\ & \text { No. } \end{aligned}$	-
410	Ratesand 'Iernjerature on the Mechanicial I'ropertien of Metals	J. 11. Hulluman	Ondinnion 1 mpt URA. W.A. Report No.	日.11. $7 / 46 / 1711$	Aprili, IIM4
418	Dovelopment of Projectile Stoola. Second Partial Roprort	$\begin{aligned} & \text { D. van Winkle and } \\ & \text { P. Zoner } \end{aligned}$	W.A. Meport No. W.A.L. 321/4-1	8.1. 7/46/1200	May, 1944
417	Principles of Projectile Design for Penetration. Third Partial keport	D. M. van Winkle	W.A. Report No W.A.L. 782/231-3	8.R. 7/45/4274	June, 1944
418	Principles of Projectile Design for Peneration. Fifth Parial Keport	C. Zener and B. Ward	$\text { W.A. } \underset{726 / 231.6}{\text { Momo. Rert No. }}$	8.R. 7/45/4276	June, 1944
419	Heesarch of Metallurgical Physics Section at Watertown Areenal during World War II	-	W.A. Mumo. Report No. 900/86	8.R. 7/48/573	March, 1945
420	Historial Reviow of the Corrolation of Ballistio and Mctallurgical Characteriatics of Domeatic Armour at Watertown Arsenal	M. Bolutaky	W.A. Report No. W.A.L. 710/795	-	-
421	On the Dotermination of Statistical Ballistio Limit Volocitios by the Method of Maximum Likolihood	L. H. Tlomms	A.P.a. Repurt No. 673	8.R. 7/45/4431	September, 1945
422	Penetration of Hlomogeneous Plate of ono Trnsilo Sitrenglh (110,000 p.e.i.) by 3-inch Capped M.62 A.E. Projectiless. First Partial Report	--	U.S. Navy 1)epartment N.I.G. Dahlgren Report No. 6-45	8.R. 7/46/3443	May, 1945
423	Theory of the Plastio Doformation of Thin Plates with Applications	J. M. Richardeon	N.I).R.C. Roport No A. 344 O.S.Il.D. No. 6860	8.R. 7/45/4288	Ootober, 1945
424	Tho Improvement of Low-Alloy Armour Steel. Part XVI.-A Study of the Effect of Bonon on Steels Suitable for Use in Armour from 3 w $\mathbf{6}$ inches in Thickness	Udy, Rosenthal, Manning and larig	$\text { o.s.R.D.D., No. } \theta 204$	8.R. 7/45/4253	Novembor, 1945
425	Tho Improvement of Low-Alloy Armour Steel. Jart XVIII.- Continuation of Dilatometric Studies of Armour with Respect to Quench Cracking	Udy, Manruing looenthal and laris	o.S.A.D. No. ${ }^{\text {No. } 6290}$	8.R. 7/45/4324	Novembor, 1945
428	Advisory Report on Indexing of Division 18 N.D.R.C. Repurte: Reports on Cast and Molled Armour	Holen L. Purdum	O.S.R.D. No. No. 0005	8.R. 7/46/760	February, 1948
427	Porforation Limite for Non-Shattoring Projectilcs Againht Thick Hornogenoous Armour at Normel Incidence	C. W. Curtis and R. L. Kramer	N.I.R.C., Roport No. A. 303 O.S.1L.D. 0464	8.R. 7/46/955	March, 1940
428	Terminal Rallistics of Tungeten Cartide Projectiles: Mechanical Strengith of Core Material	C. W. Curtis and R. L. Kramer	N.D.R.C. Repmrt No A-304 O.S.R.D. 6465	8.R. 7/46/1097	March, 1046
120	Terminal Ballistics of Tungsten Carbide P'rojectiles: Length Test	C. W. Curtis, R. J. Emrich and k. L. Kramer	N.D.R.C. Roport No. A-395 O.S.R.D. 646 A	S.R. 7/40/954	March, 1948
430	Terminal Ballistics of Tungaten Carrido Projectiles: Effect of Ciarrier, Part It	IR. J. Einrich	N.R.I).(. Report No A. 306 U.S.L.D. 6467	S.R. 7/46/1045	Maroh, 1946

No.	'Titlo	Authors	Imauing suthorly	Meferenoe	1 Date
431	Terminal Hallistics of Tungston Carbido Projectiles: Effoct of Carrier, Part III	IR. J. Einrieh	N.I.R.C. Report No. A.475 O.S.R.D. 8月39	8.R. 7/48/959	March, 1948
4.3		(1) W. Curtia	N.t, It it Import No. A.47t U.S.IT.D. 6840	H. IC. 7/40/1047	Marul, ivid
433	Terminal Balliotics of Tungsten Carbide Projectiles: Artillery Typo Capa	H. L. Kramer	N.D.R.C. Report No. A-477 O.S.R.D. 6941	8.R. 7/48/104	March, 1046
434	The Terminal Balliotion of Armour-Piorcing I'rojectilos	c. W. Curtis	N.D.R.C. Report No. A-478 0.8.R.D. 6642	8.1. 7/46/1064	Mand, 1940
435	High Obliqulty Attaok of Deck Targets by $\mathbf{2 0} \mathbf{m m}$. model Shell	H. R. Calvert and J. Vennart	A.R.D.	A.R.D. T.B. Report 7/45	July, 1045
436	High Obliquity Attack of Deck Targets. Part II	H. R. Calvort and J. Vennart	A.R.D.	A.R.D. T.B. Report 2/48	Fobruaty, 1940
437	Yifth Progreen Report on the Inveetigation of Sicale Effiect in Armuur Penetration	P. J. Higge and V. M. Hicknon	N.P.L.	N.P.L. Eng. Div. 312/47	Decombor, 1947
438	Penetration of Stoel under Statio and Dynamio Conditions. Part XIII.-Statio Penetration with Lubricated Punches	G. O. Baines	A.f.D.	T.B. Report 4/43	-
439	Statio Punohing Expariments on Mild Stoel up to $3.5 \mathrm{t} / \mathrm{d}$	a. O. Haines	A.R.D.	T.B. Report 8/45	-
440	Determination of the Co-efficienta of Friction of Steel on Steel at High Velocities	G. Grotach and E. Plake	(Advisory Council on Scientific Reeearoh and Technical Dovelopment A.C. 5012)	2.C.8.8. Vol. 35 Nos. $1 \& 2$	January, 1240 and February, 190
441	Investigatione on the Penetration of Armour Plato	H. Krata	Bericht 166 Lilienthalgesellachaft	-	-
442	The Rebaviour of Piercing C'apea and the Mechanism of Shattor as Illustrated by Multiple Spark Photographs. Part 1.-Attack of Homo. Hard Plato by Cappexd and Uncapped 0.303 inch Model Shot	C. A. Adamb and H. F. Hills	A.R.D.	T.B. Report 8/43	-
443	Report on Bend Teets on Three Types of Projectile Steel	B. D. Burne end P. J. Higgs	N.P.L. Eng. Div. lepmort 235/46	A.R.D. T.B. Heport 12/46	-
444	The Theory of Armour Penotration by Tungsten Carbide Shot and the Effect of Head Shape on Peformanco at High Velocitios	R. Hill	A.R.D.	T.B. Keport 29/45	-
445	The Thoory of Wodgo Indentation at Oblique Incidence and its Application to the Calculation of Forces on a Yawed Shot Impacting on Armour at any Angle	1L. Hill and R. H. Lwe	A.R.D.	T.B. Report 1/48	-
448	The Break-up of Shot on Thin Obliquo Platee	-	D.T.D.	Armour Branch Report No. 6387A/14, No. 1	--
447	Spaced Armour Absemblics Dopending for Effectiveness on the Break-up of Shot	J. W. Thomreon	M.o.s.	Permament Recorda of Roeoarch and Development No. 5.034	-

INDEX.

								pagr	
Asgle atteck. effect on plate	\ldots	...	\ldots	10	
Effect on projectile ...	\ldots		35. 26. 27, 50, 51
Armoar plate assesment of quality	...	\ldots	\ldots	\ldots	\ldots	1	
Typical damage	\ldots	1	
Δ moured decis	56	
Arial pressare in shot due to inertie	of		\ldots	14	

Elustic deformazion in thick platee 2. 43
Elistic vibrati-3 in shot 40. 4i

Elastic theory :i resistance to penetration 42

Expanion of a cylindrical or spherical hole in an imfinite medium 20. 41

Face-iardened plate	\ldots	...	\ldots	\ldots	...	\ldots	14, 27
Failore of adapter	\ldots	16								
Sield	\ldots	\ldots	15
Shot	\ldots	\ldots	\ldots	12
Fairbaira	\ldots	\ldots	\ldots	\ldots	20
Figiting vehicles	...	\ldots	\ldots	\ldots	\cdots		14, 27
Fightang Vehicles Design Department:-										
Firing trials	...	\cdots	\ldots	\ldots	\ldots	...	\ldots	25
Penetration form		22
Flaing	\ldots	\ldots	\ldots	\ldots	2. 6
Flame-hardening	\ldots	...	14
Flas-ieaded shot	\ldots	...		11, 12
Fracion coefficient in penetration			\ldots	2, 33
Lo static panching	33

Hariness gradient in shot		\ldots	\ldots	\ldots	...	11. 45, 46. 51
Hariness of plate	...	\ldots	\ldots	\ldots	24. 25. 31, 34, 36
Of shell	...	\ldots	\ldots	\ldots	\ldots	\ldots		15. 16
Of shot	...	\ldots	\ldots	\ldots		24, 46, 57
Hemi failure in aholl	\ldots	15
Head resirtance	\ldots	31
Heai shape	\cdots	\ldots	\ldots	\ldots	...	\ldots		9. 10. 11, 12. 39
Hisconife	\ldots	\ldots	\ldots	\ldots	\ldots	22
Hingeing action	\ldots	10

Ineraa of plate 13, 14

Kinetic energy tranaferred to plate 42, 43

Lacinar cracks	\ldots	\ldots	...	\ldots	4. 5
Land rebicles		\ldots	\ldots		\ldots	\ldots	57, 58.59
Lip vidth	\ldots	...	\ldots	9
" L-zlejobn " projectiles	\ldots	\ldots	\ldots	62
Losc to perforate plate. si	simple th		\ldots	7
Losj in dyoamic test		...	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	39
In static test	\ldots	\ldots	...	33
Lubrecation in static teste	8	\ldots	...	33

N.P.L. firing triala		\ldots		26. 34
N.P.L. penetration formula for normal a	atack	\ldots	\ldots	\ldots	\ldots		23
Naral Research Laboratory, Washington	\ldots	\ldots	39
Norasal attack of armour plate	\ldots						1. 2

Obli:ne attack (see angle attack).
Ogiral head form

Perisration	\ldots	...	17	
Peteling. back	\ldots	\ldots	...	\ldots	\ldots	2	
Front ...	\cdots	\ldots	\ldots	\ldots	...		\ldots	\ldots	\ldots	\ldots		. 2
Pie.ning caps	\ldots	\ldots	\ldots	...	\ldots	\ldots	\ldots	...	\ldots	...		4. 15, 27, 52
Plame deformat	on in	plate	\ldots	\ldots	\ldots	...	\ldots	\ldots	...	\ldots		. 4
Plagac strain in	shot,	ropa	tion		\ldots	..	\ldots	...	\ldots	\ldots	48	
Plaze thickness	\ldots	\ldots	\ldots	\ldots	...	\ldots		. $3,7,25,28,38,38,63$
Plagzing	...	\ldots	\ldots	...	\ldots	...	\ldots	\ldots	\ldots	.		. $3,4,7,8,8,10$
Podselet coefficie		\ldots	...	\ldots	\ldots	...	\ldots	4	
Ponsplet theory	\ldots	\ldots	\ldots	\cdots	\ldots	\cdots		8. 19, 20, 44
Primeton Cnive	sity	ing t		\cdots	\ldots	2	

1

Rate of strain	\ldots	\ldots	...	\ldots	...	\ldots	\ldots	47	
Res:zion on shot ...		\ldots		...	\ldots	..	\cdot	\ldots		, 31
" Believed adapter"	\ldots			16	
Resisual velocity	\cdots	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	19	
Hesmance to penetration		\ldots	\ldots	\ldots	\cdots	\ldots	\ldots	..	7	
Reis-dation measurements	s in per	ation		...	\ldots	\ldots	\ldots	..	39	
Rurexinet	\ldots	...	\cdots $12,46,54$
Roics	\ldots	...	\ldots	\ldots	\ldots	\ldots	\ldots	18	
Rolied armour plate	- ...	\ldots		...	\ldots	\ldots	\ldots			6
R.P. f. firing trials, against	ast thin			...	\ldots	\ldots	\ldots		26	
Yor dramic retardati	tion mea	me		\ldots		39	

Sabre projectiles	62
Sceneffect	\ldots	23. 24
Set-rip in shell	\ldots	\ldots	...	15. 16
in shot	\cdots	13. 14
Shemer failure	13
Sheir iracture in plate	\ldots	...	\ldots	\cdots	...	\ldots	...	2
Shear atress in plate	2. 3. 5, 8
Sheiths for cored shot	...	\ldots	\ldots	\ldots	\ldots	61. 62
Sic:ared cores	61
Soprith	23
Spasad armour	\ldots	53. $54.56,58$
Spersic limit energy	...	\ldots	...	\ldots	...	\ldots	\ldots	18
Squeze bore projectiles		6.2
Ste: cracking	\cdots	3. 5
Steut punching	7, 33, 34
Streses in a rigid rod	\ldots	...	\ldots	50
Strusee in shot	11, 31, 49

BECRETS.

DISOREET.

[^0]: † This is a simplifed pictare, but represente a reasonable approsimation to the true one.

[^1]: - This is :orne out by the fact that some plates giving star cracking failures can be made to gire plugging failures be zachining off the oxide embrittled back face.

[^2]: - A disu_action has been made between discing and flaking (page 2 and Figs. 4, 5, \& 6). This distinction bus been found useful in practice, but the nomenclature is not uniform in the literature of the sobject. The terms may sometimes be found to be interchenged. In particular, in reports of trials on tank armole it rill be found that the term "flake" is applied in cases in which "dise" would be ured eccording as the present definitions.

[^3]: - Care is necessary with regard to units. If, as is usual, W is expressed in lb., e in f.s., t / d in inches and p. $二$ tons per equare inch, g must be taken as 32.2 (f.s. ${ }^{2}$) $\times 2240$ ($\mathrm{lb} . /$ ton) $\times 1 / 12$ ($\mathrm{ft} . / \mathrm{in}$.) $=6020$, giving $\frac{\pi g}{2}$ = $=0$.
 - Both Brinell and diamond pyramid hardnesses are expressed in kg./ram. ${ }^{3}$ (1 kg./mm. ${ }^{2}=0 \cdot 635$ ton/in. ${ }^{3}$).
 § 7 is inserted to convert the stresses to practical units of weight per unit area.

[^4]: 'In each case the lower Nue is for $y_{y}=90$ tonstin.' and the higher for $y_{y}=30$ tons $/ \mathrm{in}^{2}{ }^{2}$.

[^5]: - The ra_{E} :e of θ at which β vanshes may be seen from formula (13a) to depend to some extent on scale of attack anc plate hardness, but $\theta=45$ degrees is a representative ralue for most practical conditions.
 + Informasion supplied by Ordnance Board.

[^6]: - In Ref. 161 reduction of about 12 per cent. callsed in critical velocity by lubrication ras reported, bus ine fringe Fare in the low velocity range 200 to $300 \mathrm{f} . \mathrm{s}$.

[^7]: * The enstence of a dynamic term is shown independently of static experiments by the fact that in the linear relation $\nabla_{1}{ }^{2}=v^{2}+s v_{1}^{\prime}$ between the squares of the striking, remaining and critical velocities $\tau_{0}{ }^{\prime}, \tau_{1}{ }^{2}, \tau$. the constant \& departs in general from unity. The partial penetration experiments show that whether 0 : not $s=1$ there is a difference between the static and dynamic forces at corresponding penetrations, but they ciso indicste that the difference is small.

[^8]: - Bending and dishing oocurred in the atatic penetration.

[^9]: - If impurt conditions are such as to give a force of sufficiently short duration at the projectile head, ware propagatim will transmit the pressure to the base, and on reflection a tension will be transmitted to the body. In these cillitions reduced hardness may prevent tensile failure.

[^10]: - Anaription (b) is not consisteut mith equation (24), but is used only in order to obtain an approximate velue fo: c. If the duration of impact is $T, T=\frac{l_{1}-x, \text { and }}{c}$ if the retardation of the bese is constant $T=\frac{2\left(L-l_{1}\right)}{U}$. Hence, we quoted ralue for c is obtained. The approximation tands to underestimate Y.

