Submarine Hull Materials

(Created 11 Feb 2020)

Type D Steel (Multinational, Pre-WW2)

Yield Strength (0.2% offset): 390 to 440 MPa range (56,564 to 63,816 psi)
Elongation: 15%
Composition: 0.3% Carbon, 0.05 to 0.3% Silicon, 1.5 to 2.5% Manganese, Maximum of 0.4% Phosphorous, remainder iron.

NOTES: Materiały konstrukcyjne okrętów says: “

W początkowej fazie zbrojeń przed drugą wojną światową budowane w niektórych krajach okręty podwodne miały kadłuby, których płaty blach łączono nitami. W ten sposób konstruowano na przykład japoń-skie okręty podwodne. Później wszystkie kadłuby były już spawane. Do ich budowywykorzystywano stal konstrukcyjną nisko-stopową o średniej zawartości węgla, niekiedy stal typu D o wysokiej wytrzyma-łości na rozciąganie, lecz o niskiej plas-tyczności. Ten gatunek opracowano na podstawie angielskiej stali „Ducal”. Skład chemiczny i niektóre własności mechaniczne stali typu D podano w tabeli. Kadłuby wykonane z tego rodzaju stali nie były spawane, obawiano się bowiem, że mogłyby później popękać. Materiał, z któregobudowano japońskie okręty podwodne,a także stosowane techniki łączenia(nitowanie, a później spawanie), zapewniały możliwość zanurzenia na głębokośćmaksymalnie 100 metrów.”

This translates to:

In the early stages of armaments before World War II, submarines built in some countries had hulls whose sheets were joined with rivets. For example, Japanese submarines were constructed in this way. Later all hulls were already welded. Low alloy structural steel with medium carbon content, sometimes type D steel with high tensile strength but low plasticity was used for their construction. This grade was developed on the basis of the English steel "Ducal". The chemical composition and some mechanical properties of type D steel are given in the table. The hulls made of this type of steel were not welded, because they were afraid that they might crack later. The material from which Japanese submarines were built, as well as the techniques of joining (riveting and later welding), provided the possibility of submersion to a maximum depth of 100 meters.”
References:
Materiały konstrukcyjne okrętów (LINK)

ST52 (German, WW2)

Yield Strength (0.2% offset): 51,000 psi (362.846 MPa)

NOTES: Used in Type VIIA/VIIB (16mm thickness), Type VIIC (18.5mm thickness), Type VIIC/41 (21.5mm thickness) and Type VIID/VIIF (20.5mm thickness).

References:
Table of Metallurgical Properties of Naval Armor and Construction Materials by Nathan Okun (LINK)
Materiały konstrukcyjne okrętów (LINK)

Krupp CM 351 (German, WW2)

Yield Strength (0.2% offset): 63,816 psi (440 MPa)
Density: 7,746 kg/m3

NOTES: Would have made up the hull of the Type VIIC/42 U-Boat (28mm thickness). The entire class was cancelled in favor of the Type XXI. Another factor that could have played a part was that Krupp could only produce 2,150 tonnes of CM 351 steels a month. The plan was to produce additional CM 351 in French mills.

References:
U-BOAT.NET (LINK)
Materiały konstrukcyjne okrętów (LINK)

“Z kolei kadłuby niemieckich okrętów podwodnych budowano ze stali niestopowej St 52 KM o wytrzymałości 510 MPa oraz zestali CM 351 (tzw. stal pancerna koncernu Kruppa). Grubość blach ze stali St 52 KM na kadłubie wynosiła 16 mm (typ VIIAi VIIB), 18,5 mm (typ VIIC), do 21,5 mm (typ VIIC/41) i 20,5 mm (typ VIID i VIIF). Kadłub okrętu typu VIIC/42 o grubości blachy 28 mm miał być wykonany ze stali CM 351 Krupp, ale z powodu deficytumateriałów cześć kadłubów wykonano również ze stali St 52 KM.
Niskostopowa stal CM 351 (zawartość węgla 0,17%, 0,3% krzemu, 1,25% manganu, 0,1% wanadu oraz 0,13% chromu)charakteryzowała się wytrzymałością 540–690 MPa i granicą plastyczności 440 MPa.”

This translates to:

On the other hand, the hulls of German submarines were built from ST 52 MPa unstressed steel with a strength of 510 MPa and CM 351 sets (so-called Krupp armor steel). The thickness of St 52 HP steel sheets on the hull was 16 mm (type VIIA and VIIB), 18.5 mm (type VIIC), up to 21.5 mm (type VIIC / 41) and 20.5 mm (type VIID and VIIF). The hull of type VIIC / 42 with a sheet thickness of 28 mm was to be made of steel CM 351 Krupp, but due to a shortage of materials, some hulls were also made of ST 52 HP steel.
Low-alloy CM 351 steel (carbon content 0.17%, 0.3% silicon, 1.25% manganese, 0.1% vanadium and 0.13% chromium) had a strength of 540–690 MPa and a yield strength of 440 MPa.”

Mild Steel (MS) (WW2)

Yield Strength (0.2% offset): 35,000 to 45,000 psi range

NOTES: Used on all USN submarines pre World War II, up to the Gato class.

References:
Table of Metallurgical Properties of Naval Armor and Construction Materials by Nathan Okun (LINK)

USN HTS Steel (American, WW2)

Yield Strength (0.2% offset): 47,000 psi (324.053 MPa)

NOTES: Was to be introduced into the Balao class as a whole, but wartime shortages of HTS caused only the Electric Boat (Groton) and Manitowoc built Balaos to have HTS.

References:
Wikipedia (LINK)
Table of Metallurgical Properties of Naval Armor and Construction Materials by Nathan Okun (LINK)
U-Boat.NET (LINK)

USN HY-42 Steel (American, 1950s)

Yield Strength (0.2% offset): 42,000 psi (289.579 MPa)

NOTES: Post-war development of STS steel by the US Navy Bureau of Ships to develop a high strength steel for warship construction. Used on the Nautilus, Skate and Skipjack SSN classes.

Reference:
Wikipedia (LINK)

USN HY-80 Steel (American, 1960s)

Yield Strength (0.2% offset): 80,000 psi (551.580 MPa)
Density: 7,746 kg/m3

NOTES: Inaugurated into USN submarine production with the Permit upon her laying down on 1 May 1959.

Reference:
Wikipedia (LINK)
MIL-S-16216K(SH) (19 June 1987) (4.8~ MB PDF)

USN HY-100 Steel (American, 1990s)

Yield Strength (0.2% offset): 100,000 psi (689.475 MPa)
Density: 7,748 kg/m3

NOTES: Inaugurated into USN submarine production experimentally in 1987-88 with the two Los Angeles class SSNs Albany and Topeka, followed by serial production in SSN-21 Seawolf in 1989. Seawolf saw significant delays and re-work of two years' work due to issues with HY100.

Reference:
Wikipedia (LINK)
MIL-S-16216K(SH) (19 June 1987) (4.8~ MB PDF)

USN HY-130 Steel (American, Cancelled)

Yield Strength: 130 ksi (896.318 MPa)
Density: 7,885 kg/m3

NOTES: The USN planned to build the Nuclear Hull Test Vehicle (NHTV), a small minisubmarine to test out HY-130, but it was ultimately canceled, along with the overall HY130 program.

Reference:
Wikipedia (LINK)
Submarine Design and Development by Norman Friedman

NS80 Steel (Japanese Oyashio SSK)

Proof Stress: 80 kgf/mm2

NOTES: The “NS” stands for “Naval Steel”.

Reference:
Submarine Matters Blog (LINK)

NS110 Steel (Japanese, Harushio/Oyashio SSK)

Yield Strength: 1078 MPa

NOTES: The “NS” stands for “Naval Steel”.

Reference:
Materiały konstrukcyjne okrętów (LINK)
Submarine Matters Blog (LINK)

HLSE110 (France SSBN)

Tensile Yield Strength: 1000 MPa

Notes: Used in 50mm thickness with a diameter of 12m.

Reference:
Materiały konstrukcyjne okrętów (LINK)

HLSE100 (France, Le Triomphant)

Yield Strength: 981 MPa

Reference:
Materiały konstrukcyjne okrętów (LINK)

HLSE80 (France, Scorpiene SSK)

Yield Strength: 800 MPa

Notes: Used in 30mm thickness with a diameter of 6m.

Reference:
Materiały konstrukcyjne okrętów (LINK)

HLSE60 (France)

Reference:
Materiały konstrukcyjne okrętów (LINK)

48-OT3 (TA5) Titanium (Russia)

Yield Strength: 588 to 650 MPa

Reference:
StrategyPage.com (LINK)