Exterior Ballistics with
MICROCOMPUTERS

by W. R. Jurens

ROY L. NAVY HAS A THEORY concering
the loss of HMS Hood, but cannot confirm it
without knowing the ballistics of the Bismarck’s
rifles. Jack Numbercruncher, having carefully stud-
ied Nathan Okun’s now classic articles on armor
penetration, is ready to compute the immunity zones
for Austro-Hungarian battleships, but lacks ballistic
information. Larry Longdrop wants to estimate the
effects of aerial bombing on various ship designs,
but is unfamiliar with the computational methods
to employ. Despite the fact that gun systems lately

have been almost entirely replaced by the missile
as the primary weapons system of most surface
warships, the fact remains that the naval rifle was
considered to be one of the major arbiters of ship
to ship combat for the majority of the time period
of interest to readers of this journal. It is therefore
somewhat surprising that until now there has been
virtually nothing published concerning the detailed
characteristics of these vital components of the naval
arsenal. In spite of certain recent and commendable
efforts to shed at least tabular light on the subject,
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it is still true that specific details on the armament
systems installed aboard the ships being considered
have been either heavily glossed or completely ignored
in recent publications on ship design and construction.

The grand problem of the ballistician can be simply
stated as follows: given a projectile of known physical
properties such as size, shape, and mass, projected
from a rifle at a known initial velocity (the determina-
tion of which is a problem in INTERIOR ballistics),
the task is to compute the remaining velocity, angle
of fall, time of flight, and range at any point on the
resulting trajectory under specified atmospheric con-
ditions. In the absence of other information, the official
‘range table’ produced by the country in question must
be considered the definitive definition of the ballistics
of any gun weapons system. Sadly, in a large per-
centage of cases, official range tables remain classified,
inaccurate, or frankly non-existent. Although it has
always been possible in principle to recompute or
create from scratch those tables that were otherwise
unavailable, it was only with the advent of the small,
reasonably priced microcomputer that such a path
became practically feasible. This paper is intended to
present what is believed to be the first generally avail-
able microcomputer program for exterior ballistics
investigations in naval history, accompanied by a suf-
ficient theoretical base to allow the prospective user
to generate accurate and complete range tables for
any reasonable gun weapon system he or she might
wish to study.

The formal study of exterior ballistics in Western
culture most likely began in Greek or Roman times
when it became valuable to be able to predict the fall
of shot of such weapons as catapults and ballistae.
Considering the rudimentary measuring instruments in
use at the time, the embryonic state of complex mathe-
matics, and the virtually complete ignorance of atmos-
pheric physics and its effects on projectile motion,
it is no surprise that early attempts at predicting the
trajectory of a projectile were unsuccessful. Although
the best physical and mathematical minds in Europe
up to the time of Galileo and Newton attempted to
solve the ballistic problem, it was not until the early
part of the 20th century that an inkling of the entire
process which was required to accurately compute the
simple trajectory of a projectile was understood and
could be practically applied to problems in the field.
Even then, the required calculations—while not in
and of themselves difficult—were extremely laborious
to perform in any quantity. Accordingly, specialized
approximation techniques, such as the Siacci and
Ingalls methods, (still used by those interested in small-
arms ballistics) were used wherever possible. Although
these methods proved adequate for trajectories with
angles of departure under about 15 degrees, the intro-
duction of much improved fire control systems be-
tween the world wars made battle ranges previously
considered impossible not only attainable but likely.
This, together with the requirement for extensive
and complete trajectories for anti-aircraft fire, made
the computations of large numbers of high-angle
trajectories a necessity—a process which could only
be effectively completed by the use of the high-speed
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digital computer. It is no coincidence that E.N.I.A.C.,
the Electronic Numerical Integrator And Calculator,
perhaps the very first ‘computer’ worthy of the
name, was for the first few years of its life engaged
almost exclusively in the computing of firing tables
for the U.S. Army and Navy. Today, the owner
of any one of the small microcomputers commonly
available, or even one of the more powerful program-
mable calculators, has at his disposal a device likely
a hundred times more capable than E.N.I.A.C., at
under one-thousandth the cost.

The solutions to ballistic problems have increased
steadily in accuracy and complexity over time. All
discussions to follow incorporate certain assumptions
which, while rendering the solutions almost useless for
actual gunnery in the field, are inconsequential in
historical analysis. These are:

A) There is no wind.

B) A ‘standard’ atmosphere is assumed, where the
variation of atmospheric characteristics with
height obeys well-defined mathematical laws.

C) The earth is flat and non-rotating.

D) The projectile is always tangent to the trajectory
(i.e. is non-yawed), and is non-spinning.

E) The dimensions of the rifle and target are con-
sidered trivial with respect to the trajectory as
a whole.

F) The acceleration of gravity is a constant.

G) The rifle is stationary at the time of firing.

It is well to note that these assumptions are implicit
in the construction of most historical range tables as
well.

Vacuum Trajectories

Although the calculations required to completely
predict the trajectory of a projectile in a resisting
medium such as air are extremely complex, the same
computations in the absence of air, or ‘in vacuo,
constitute a rather trivial problem in elementary mathe-
matics; one that is, in fact, taught in most high school
physics courses. Even though the application of the
‘in vacuo’ formulae are of little use in solving practical
problems of gunnery, they nonetheless can give a very
fair estimate of a weapon’s maximum potential per-
formance if the initial velocity is relatively low, the
projectile relatively dense, and the angle of departure
is large. A study of the characteristics of vacuum
trajectories also serves as an excellent ‘jumping-off’
point for more complex concepts, and so such a study
is an excellent place at which to begin. Those un-
familiar with the terminology commonly used in bal-
listics should refer to figure 1.

Neglecting atmospheric drag, the trajectory takes the
form of a parabola with its characteristics dependent
only upon the initial velocity of the projectile, VO;
the angle of departure, LD; and the value assigned to
the acceleration of gravity, g. The equations are:

RANGE = X = VO’in2 LD
g

MAX. ORDINATE = MO = ‘Lz(Xsinz LD
g
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TIME OF FLIGHT = T = 2VYOin LD
g

TERMINAL VELOCITY = VT = VO

ANGLE OF FALL = LF = LD

In summary then, when air resistance is neglected,
the angle of fall is equal to the angle of departure,
the terminal velocity is equal to the initial velocity,
the maximum ordinate is equal to one-half the total
range, and the shape and weight of the shell are un-
important. As an exercise, the reader might wish to
confirm that assuming VO = 330 M/sec, LD = 32

>

degrees, and g = 9.80 M/sec?, the terminal trajectory
conditions are VT = 330 M/sec, LF = 32 degrees,
range X = 9987.6 meters, and time of flight T = 35.688
seconds.

The Ballistic Coefficient

Although the simplifications involved in the previous
method would be adequate if we were fighting a war in
space, or conducting a naval engagement on the moon,
in real life it is essential to consider air resistance in
ballistic computations if useful results are to be ob-
tained. Ninety-five percent of the effort involved in
trajectory computation reflects the need to take atmos-
pheric effects into consideration. To begin our study
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of atmospheric ballistics, we must begin by introducing
one of the most fundamental concepts of the ballis-
tician’s art, the ballistic coefficient, C.

Almost anyone who has observed the path of an
object thrown through the air has observed, at least
unconsciously, that the distance the object travels
is strongly affected by both its weight and its shape.
This difference in ‘carrying power’ is what makes it
impossible to throw a paper wad as far as a baseball,
even though their shape and size might be virtually
identical. The baseball travels much farther than the
paper wad because its weight (or what is almost the
same thing, its density) is much greater. This variation
in range due to density is handled in formal ballistics
by the ballistic coefficient C, which can simply be
written:

c=W

i D?

where W equals the mass of the projectile in kg, i equals
a form factor used to correct for small variations in
projectile geometry, and D equals the diameter of the
projectile in m. Assuming i = 1.00 for now, the bal-
listic coefficient of a 400 mm diameter 1000 kg bullet
would be equal to 1000 (1.00 x .402) or 6250. Although
strictly speaking the ballistic coefficient is no longer in
use by ballisticians (insofar as they converted to the
terminology and techniques of aerodynamicists in the
1960s), for the purposes of this discussion, the concept
remains perfectly adequate, and is easier for the gen-
eral reader to understand. A full discussion of the
(rather arbitrary) differences between the old and new
computational techniques is given in NOTS TP 3902,
AMCP 706-242, and Hoerner.

The Drag Function, Kd

In order to complete our determination of the bal-
listic coefficient, C, we must obtain and utilize the
appropriate value for i, the form factor. This requires
understanding of the drag function Kd, to which i is
related. (See note 1).

The drag function is a graphic presentation or nu-
merical tabulation of the resistance or deceleration of
a projectile due to air resistance, measured over a
wide range of velocities. Each projectile shape has a
characteristic and unique drag function, but in practice
it is usually assumed that the projectile of interest has
a drag function curve proportional to one for a ‘stand-
ard’ projectile, corrected by means of the form factor, i.
When expressed graphically, the drag function is
usually presented as shown in figure 2, in which the
ordinate or vertical axis of the graph gives the drag
coefficient, Kd, (in more modern terminology CDo),
and the horizontal axis of the graph, the abscissa, is

Note 1: As mentioned above, this discussion has been done in the
conventional “ballistic” system of units popular until the early 1960s.
Most current computation is done in the newer “aerodynamic”
system, where the drag coefficient is defined as Cd, or occasionally,
Cdo. For reference, Cd = Cdo = 2.546 Kd, and conversely, Kd =
.3927 Cd or Cdc. The system of units in use in any particular docu-
ment can usually be obtained from the date, the context, the labels
on the graphs, or by inspection, as typical values in the aero-
dynamic system are about three times larger than those in the
ballistic system.
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graduated in units of Mach number, where Mach 1 is
equal to the speed of sound. The original drag function
(commonly known as the ‘Gavre function’ or ‘Kdl’)
was determined by the French Gavre Commission in
the 1880s and represents the then popular blunt-nosed
projectile shown as type 1 on figure 3. This was the
most common function in use until at least the mid-
1930s worldwide, although it required rather heavy
correction by means of the form factor in order to re-
main useful. Later, other functions were determined
for projectiles of more ‘modern’ shape such as the type
7 and type 8. The British, working in parallel with
the Americans, developed their ‘1940 law’ at the be-
ginning of WW II and used it thereafter. Previously
they had apparently used the Gavre function, or the
curve shown as the ‘1938 law’ taken from the 1938
Handbook of Ballistics and Gunnery. In simple terms,
it can be seen as a correction term relating the drag
coefficient of some standard projectile to that of the
projectile of interest, thus compensating in a simple
way for small changes in projectile geometry. For ex-
ample, at Mach 2.5 the drag coefficients for the type
1 and type 8 projectiles are about .212 and .112 respec-
tively. Thus the form factor for a type 8 projectile
vstype | AT THAT PARTICULAR MACH NUMBER
would equal .112/.212 or .528; i.e. its drag would only
be about half as great as the older shell. Because the
drag function curves for type 1 and type 8 are not
simply related to each other, the form factor changes
with changes in projectile velocity, thus complicating
the matter; nonetheless it can be used as a valuable
approximation in the absence of better information.
The shapes of some of the common standard projectiles
that generated the drag function curves on figure 2 are
shown on figure 3, with dimensions in calibers.

For any given velocity, it can be shown that the
retardation of the projectile in meters/sec? is equal to
(Kd i p V3)/C where Kd equals the drag coefficient
of the bullet at the particular velocity in question
(taken from figure 2), p equals the air density in kilo-
grams per cubic meter, V equals the velocity in meters
per second, and i equals the form factor. Once the
retardation is known, then the motion of the projectile
in air can be determined to virtually any required
degree of accuracy by incorporating this value into
the computation for a vacuum trajectory in steps suf-
ficiently small that the non-linearity of the drag function
over time becomes negligible. This procedure of small
steps coupled with successive and converging error
correction is the essence of the numerical integration
technique to be discussed later. Although other meth-
ods, such as those developed by Siacci or Ingalls, can
achieve comparable accuracy under a severely limited
range of initial conditions, when the computations are
being done by computer rather than by hand, the time
savings obtained in using these simplified methods is
relatively small and they are rarely used today.

The form factor was long used as a method to adjust
the computed trajectory to match the results of actual
field firings. Thus it can be used as a sort of mathe-
matical ‘catch-all,” or ‘fudge factor’ to compensate
for the effects of virtually all unknown or neglected
factors in computational procedure. In the absence of
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actual field results to calibrate the form factor, which
will be the case in the majority of problems of interest
here, there are a number of emperical equations and
guidelines that can be used to estimate it directly ‘off
the drawing board.” Some of the more important of
these are given below:

Effect of Head Length & Ogival Radius:

As shown in figure 3, most spin-stabilized artillery
ammunition can be seen to be made up of a roughly
cylindrical after section, the body, blended more or
less evenly into a tapering nose section, or ogive.
Tangent ogive designs, such as the type 1 projectile,
have a perfect blend, whereas the so called ‘secant
ogive’ designs, such as type 8, are discontinuous at
the joint. A projectile such as type 1 where the nose
is struck with a 2 calibers radius arc is described as
having a ‘2 Calibers Radius Head,” or *2 C.R.H.” In
a standard ogival headed projectile where the ogive
meets the head tangentially, the head length, i.e. the
distance between the theoretical tip of the nose of
the projectile and the point where the shell becomes
cylindrical, measured down the projectile’s centerline,
can be shown to be:

HL = (N — .25)-3

and conversely, the calibers radius head is given by the
relationship:

N = HL? + .25

where N equals the number of calibers radius head
and HL equals the head length in calibers. Using this
equation, a 7 C.R.H. tangent ogive will have a head
length of 2.598 calibers and vice-versa. If the ogive in
use is not tangent, but is struck in such a way as to
leave a shoulder near the bourrelet, as for example in
projectile type 8, then the equation does not directly
apply. Projectile type 8 is said tohave a “*5/10 C.R.H.,”
meaning that the ogive is struck with a radius of 10
calibers, but that the head length is only 2.18 calibers,
equivalent to that of a 5 C.R.H. projectile. The con-
fusion is increased by the fact that at times projectiles
were called up as though they were tangent ogive
designs although this was not the case, as in the British
4.7 in./62 Ib. shell which had a 5/10 C.R.H. but a ‘serv-
ice nomenclature’ of 6 C.R.H., or the 15 in./1938 Ib.
practice projectile which was also nominally a 6
C.R.H., but was in actuality a 4.52/10. Caution must
therefore be used in assuming that a published figure
was an actual one in the absence of an engineering
drawing, dimensioned sketch, or carefully scaled
photograph. Further, many projectiles have, for various
reasons, small flattened areas at the nose which means
that the actual head length is somewhat less than the
above equations would indicate. For example, al-
though the type 8 projectile has a 10 C.R.H. which
would equate to a head length of 3.122 calibers,
in actuality because of the small rounded area at the
nose, and because the ogive does not meet the cylin-
drical portion of the shell smoothly, (i.e. it is not a
tangent ogive), it has an effective head length of only
2.18 calibers as shown on figure 3. Fortunately, al-
though head length is itself fairly important, small
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errors in the value chosen form the ogival radius are
of relatively little consequence.

Having ascertained at least a working value for the
head length, then figure 4 can be used to estimate the
form factor appropriate to the given drag function. For
example, if one were to use the Kdl (Gavre) function
as standard, but was interested in a 4 C.R.H. projectile
instead of the 2 C.R.H. for which the Gavre function
was computed, the effective form factor can be found
by reading up from the 4 C.R.H. head length value,
4 — .25):% = 1.936), to the line marked ‘il,” and
obtaining the approximate value .77. In the absence
of any detailed information whatever, one can often
make an educated guess as to the actual value of the
ogival radius by noting that there was a steady increase
in the radius over time, with 2 C.R.H. shells being
common prior to and during WW I, 5-7 C.R.H. typical
between the wars, and 7-10 C.R.H. being used during
WW 1l and after; some recently manufactured ex-
tended range projectiles have an astounding40 C.R.H.!
Although the radius of curvature of the head does have
an effect on the drag coefficient and drag function
curve, the effect is usually rather small compared to
that of head length, quite large changes in radius rarely
changing the value of Kd more than *.05.

Effect of Flat Nose:

In the absence of other data, the effect of a flat nose
on projectiles having the same head length, such as
might be created by the installation of a fuze, can be
approximated by the formula:

IC =1+ (.375 DN?)

Where IC equals the corrected form factor and DN
equals the diameter of the flat nose in calibers. For
example, the corrected form factor for a 400 mm cali-
ber projectile with a 75 mm flat nose would be approxi-
mately

1 + (.375 x .18752) = 1.013

Effect of Base Area and Boattail:

If the projectile is traveling under the speed of sound,
that is if its velocity is less than Mach 1, the value of
Kd for two otherwise similarly shaped projectiles is
roughly proportionate to their relative base areas.
Above Mach 1, the effect of a boattail is somewhat
more difficult to evaluate, being affected by other fac-
tors such as the position and size of the driving band(s).
In general, it appears best to use the Kd7 drag func-
tion curve with a form factor proportionate to the
relative base areas of the unknown and the type 7
projectiles. As the type 7 projectile has a base area
.709 times that of a flat based shell, the form factor
of a projectile with a base area of .640 would therefore
run against Kd7 with a form factor of .640/.709 = .902.
Unfortunately, as the form factor changed caused by a
variation in base area is not linear over Mach no., no
simple correction can be entirely satisfactory. One quite
accurate but tedious method would be drawn in the
approximate curve for the appropriate drag function
on figure 2 by using the curves for the type 7 and type 8
projectiles as a guide, as these can be considered
identical except for the boattail. The new coordinates
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of the estimated drag function curve could then be en-
tered into the computer as a new curve entirely, as will
be described later. British practice was simply to assign
a boattail projectile a form factor of .92. Incidentally,
while adding a boattail might thus seem to be a rela-
tively simple and easy way to decrease the drag and
thus increase the range of a projectile at no cost, in
practice the presence of a boattail tends to increase
both the natural dispersion of the shell and the wear of
the rifling of the gun.

Effect of Projectile Yaw

For a number of reasons that cannot be discussed
here, projectiles fired from rifled guns do not exactly
follow the curvature of the trajectory, but instead are
almost always canted slightly above and to the right
of the direction of flight. This causes, among other
things, the phenomena of drift. As the magnitude of
this yaw increases, the effective ballistic coefficient of
the projectile similarly decreases, inasmuch as a greater
projectile area (caliber) is exposed to the air without
a compensating increase in mass. It is not uncommon
for projectiles exiting the muzzle to experience tran-
sient yaws of up to 5 degrees, although in normal
projectile designs this rapidly damps to a residual yaw
(commonly called the ‘yaw of repose’) of two degrees
or less. Basically the yaw of the bullet is determined
by complex equations relating to its shape, spin rate,
and moment of inertia. To complicate matters, the sta-
bility and yaw of the projectile tends to change from
trajectory to trajectory as the angle of departure
changes—the rapidly spinning stable shell has greater
difficulty following a highly curved trajectory than a
flat one and therefore its yaw is, on average, greater.
Because of this effect, it is almost impossible to give
more than a general estimate of the yaw magnitude
of a given projectile without getting very specific, but
the effect on Kd of yaw for most shells closely ap-
proximates .005 per deg?. For example, the increase
in Kd for a projectile yawed 2 degrees would be ap-
proximately .005 x 22 or + .02. A full description of the
methods of compensating for yaw can be found in al-
most any of the newer references in the bibliography.
Most ballistic computations completed before about
1940 ignored the consequences of yaw and included
its effects in the form factor sump.

Atmospheric characteristics:

The drag function curves discussed earlier have for
the most part been developed in ‘laboratory’ situations,
or have been reduced to conform to a mathematically
perfect atmosphere to aid in computations. As might
be expected, some adjustments therefore must be made
if we are to use these drag function curves under ‘real
life’ conditions. Although it is not the purpose of this
paper to go into a long discussion on the effects of
meteorological conditions on trajectories, which are of
little practical value to the researcher in any case, it is
nonetheless necessary to briefly consider how assumed
initial conditions in the laboratory atmosphere have
an effect on the output of the final computed trajectory.

The atmosphere, far from being mathematically per-
fect, is, as any weather watcher knows, imperfect,
inhomogeneous, and virtually unpredictable over time.
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Although the methods of compensating for changes in
the weather are of great importance in practical gun-
nery, in theoretical ballistics all projectiles are assumed
to travel through a so called ‘standard atmosphere’
of stable and predictable characteristics. Unfortu-
nately, until the 1950s there was little or no interna-
tional consensus as to the value of the variables to
be used in the standard atmosphere, with the result
that every nation chose its own values more or less
arbitrarily, and changed them without notice as the
situation required. Even worse, some of the earlier
standard atmospheric variables were mere ‘guessti-
mates’ or values chosen primarily to suit computational
expedience. A few of the more useful standard at-
mospheres that have been used in the past are tabulated
below:

[See following page for Table]

These differences in the standard atmosphere mean
that often the actual relative performance of a pair of
naval rifles cannot be directly compared even if official
range tables are available for both simply because the
tables have been computed to apply under different
conditions. In order to obtain a valid picture of the
gun’s relative performances, the determination of the
form factor, the drag function, and the composition of
the standard atmosphere must all, of necessity, be
identical. Although there is usually not enough informa-
tion available to reduce ALL of these factors to a com-
mon base, it is true that one of the primary advantages
of the system being described here is that is does allow
at least some allowance for these factors to be made,
if required.

Range Tables

Though the contents and format of range tables
varied from country to country and from time to time,
all range tables (such as the sample U.S. range table
reproduced with this article) contained values for ter-
minal velocity, angle of fall, time of flight, maximum
ordinate, and angle of departure tabulated against
range, typically in 100 yard (or 100 meter) increments.
In addition, most range tabies could be used in con-
junction with tables of differential effects that enabled
quick estimation of the effects on the trajectory of
non-standard conditions, such as variations in pro-
jectile weight or initial velocity. The construction of a
range table was a complicated process and subject to
many variations, but the following procedure is typical.
First, one obtained a rifle in good (or standard) con-
dition and a set of carefully manufactured test projec-
tiles. After waiting for a reasonably stable and repre-
sentative day, one fired groups of 5 to 10 shots at
incremental angles of departure such as 2, 5, 10, 20,
30, and 45 degrees, and carefully measured the exact
initial conditions for each round. The mean range to
impact for each of the test groups was found and
corrections were made to the range to allow for non-
standard conditions in wind, air density, and other
factors. Using techniques we have already discussed,
one selected an appropriate drag function and mathe-
matically ‘fired’ the projectile at elevations and veloci-
ties corresponding to those used for the actual field
tests. The computed range from these mathematical
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TABLE OF “STANDARD” ATMOSPHERES

Surface Surface
Country and Mach 1 Temp.
Time Frame (M/[Sec.) (Deg. C.)
U.S.A.:
Pre WW 11 341.458 15
WwW II 341.458 15(?)
Post WW 11 340.428 15
BRITAIN:
Pre WW I 341.986 15.55
WW II (@) M
Post WW 1 @) @)
GERMANY:
WWw II (@) 10.5
JAPAN:
WW II @) ®)
INTERNATIONAL:
Post WW II
A.R.D.C. 340.292 15
I.C.A.O. 340.428 15
Standard Artillery
Atmosphere ®) 15
Notes:

Surface Surface Density/
Air Density Pressure Altitude
(KGIM3) (MM HG.) Function
1.2034 750 1—.000045Y
1.2034 750 1—.000045Y
1.225 760 Note |
1.222 762 Note 2
(7 ) (@)
(@] ? ?”
1.245 760 7
? (7 (7
1.2250 760 Note 3
1.2250 760 Note 3
1.2034 760 7

1) Unknown, but likely similar to A.R.D.C. or [.C.A.O. Standard Atmosphere.

2) 1/(10{. 14I(Y/3048))).

3) (MO/R*)(P/TM) where: R* = Universal Gas Constant
P = Pressure

TM = Molecular Scale Temperature

MO = 28.9644
4) Y = Altitude in Meters.

firings was forced to match the actual range by use of
the form factor, and suitable mathematical routines
were used to compute as many trajectories as were
required to define a smooth curve for the terminal
condition of interest. Using this curve, values of the
terminal conditions were picked off at even intervals
of range and tabulated to form the basic range table.
The final step was to compute the differential effects
tables by one of a number of methods, and append them
to the basic range or firing table. Essentially the same
procedures as described above can be used today to
construct a range table for any naval weapon of his-
torical interest, although without the test firings of
course.

The Numerical Integration Technique

The numerical integration process used in the com-
puter program is common to many areas of mathe-
matics and science. The interested reader will be able
to find numerous variations on the theme, constructed
both to suit the requirements of a given problem and to
more-or-less streamline the computational procedures.
Although a full appreciation of the nuances of the tech-
nique requires a rather high degree of mathematical
sophistication, nonetheless its basic application to the
problems of ballistics requires knowledge of only ele-
mentary mathematical operations, although they must

be repeated a great many times to gain a solution.
The labor of completing the enormous number of
calculations required, no matter how simple each might
individually be, coupled with the fact that any single
error in the very long sequence of operations had the
potential to negate the entire result, made the process
of numerical integration extremely difficult until the
advent of the digital computer in the 1940s. Detailed
descriptions of the technique of numerical integration,
including many useful shortcuts in computation, can
be found in many standard textbooks on the subject.
The following protocol, somewhat simplified to aid in
understanding, is adapted from one given in Heerman'’s
Exterior Ballistics, 1935.

Assume a 1000 kg 400 mm caliber type 8 projectile
with an initial velocity of 800 m/sec. and an angle
of departure of 30 degrees. The form factor is again
assumed as being 1.00, and we shall select a value of
.10 seconds as our integration interval, I, which means
that for a 90 second time of flight, we would need to
perform the following procedure some 900 times to
complete the trajectory.

Given the initial trajectory (VO) of 800 m/sec and
an angle of departure (LD) of 30 degrees, the hori-
zontal components of the velocity (XO)is VO cos LD
or 692.82 m/sec and the vertical component (YO) is
equal to VO sin LD or 400 m/sec. The Mach no.
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is equal to 800/340 or 2.314. From our graph of the
drag function for the type 8 projectile, we can find
that the drag coefficient for the type 8 projectile at Mach
2.314 = .1188 and that therefore the initial retardation
of the projectile (EO) is equal to (.1188 X 1.2034 X
8002)/6250 or 14.643 M/sec?. The horizontal com-
ponent of the retardation (HO) is therefore 14.642
cos LD = 12.6811 M/sec? and the vertical component
(JO) is equal to (14.642 sin LD) + g = 7.231 + 9.8067
= 17.128 M/sec?.

Our first prediction of the horizontal velocity of the
projectile (X1) is equal to the horizontal component
found above minus the retardation for the integration
interval we have chosen, viz. XO — (HO 1) or 692.82
— (12.681 x 1) = 691.55 M/sec. Similarly, the first pre-
diction of the vertical velocity (Y1) equals YO — JO

I) or 400 — (17.128 x .1) = 398.287 M/sec. The
velocity at the end of the interval (V1) is evidently
(X12 + Y12):5 or 798.04 M/sec., and the new ““angle
of departure™ at the end of the interval (L1) = Atn
(Y 1/X1) = 29.938 degrees.

Tentatively, we might now assume that at the end of
the one tenth second interval the projectile was691.56 X
10 = 69.1 meters downrange and at an altitude of
398.287 x .10 = 39.83 meters. This would only be true
if the projectile had been retarded at the rate for 800
M/sec for the entire interval. As the projectile was
being retarded at a variable rate over this time period,
however, this assumption would be incorrect. The
human computer now finds himself in a curious ‘catch
22’ situation. Insofar as the retardation of the projectile
is not a linear function of velocity, as is shown by the
drag function plots, one cannot predict the velocity
until one knows the retardation, and one cannot predict
the retardation until one knows the velocity. The
method by which we avoid this logical trap is at the
heart of the numerical integration procedure.

As a first approximation, let us assume that the true
retardation of the projectile for the first tenth second
is equal to the AVERAGE of that for our initial and
final velocities for the interval. Thus the mean vertical
velocity for the interval (MI) can be computed to be
(YO + Y1)/2 or 399.144 M/sec and the height at the
end of the interval is M1 I or 39.914 meters. Know-
ing the approximate altitude, and knowing that the
density of the air decreases with increasing height,
we can now use one of the standard density altitude
functions to determine the new density to be used in
our computations, in this case .9958. Using the drag
coefficient for the velocity at the end of the interval,
and dividing our old ballistic coefficient by the density,
we can find that the new total retardation (E1) is equal
to 14.5325 M/sec, with a horizontal component (H1) of
14.5325 cos (LL1) = 12.593 M/sec. The vertical com-
ponent (J 1), after including the term for the acceleration
of gravity, is similarly 17.0595 M/sec.

We now have the retardation components for both
the beginning and the end of the interval in question.
The mean or average retardation components for the
interval are therefore equal to (HO + H1)/2 for the
horizontal component (H2), and JO + J1)/2 for the
vertical component (J2). The horizontal and vertical
velocities at the end of the interval are then X2 = XO —
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(H2 ) = 691.5566 M/sec. and Y2 = YO — (J2 ) =
398.290 M/sec. respectively. The final velocity of the
projectile (V2) is then equal to (X22 + Y22);% = 798.051
M/sec, and the final angle is equal to atn (Y2/X2) =
29.937 degrees.

Comparing the values for the first and second pre-
dictions for the final velocity, V1 and V2, we find the
difference to be very small, in this case only about
01 M/sec. If the person doing the computations felt
that the differences were acceptable, he could then use
the values obtained for the end of the first interval
as initial values for the beginning of the second interval,
and mathematically move the projectile along a step.
If he felt the discrepancies were excessive, he would
use the results of the first and second predictions to
form yet a third prediction for the interval. Although in
principle the process of successive approximation
could be continued indefinitely, in practice the tech-
nique rapidly converged upon a limit beyond which
no further precision could be obtained. The number
of iterations required to cause an acceptable level of
convergence increases as the time interval gets larger
and a careful tradeoff was made in order to minimize
the number of calculations required to complete the
job. Nonetheless, as anyone who has attempted to fol-
low even a broad outline of the procedures above will
realize, the process was at best extremely tedious,
error prone, and essentially impossible to complete
by hand. It is a measure of the true power of the modern
microcomputer that it can compute the trajectory of a
projectile using essentially this procedure in a time
usually only slightly greater than the actual time of
flight.

The Structure and Use of the Program

The program reproduced here has been specifically
written to run on a 48K Apple II + microcomputer
system with at least one disk drive, although inasmuch
as it uses few unusual commands, it should run virtu-
ally unaltered (except for screen or printer formatting
instructions) on any popular microcomputer currently
available. The Apple II +, though it may seem out-
moded by many of the ‘newer’ computers on the
market, has the distinct advantage of commanding an
extremely large software (program) base, being ex-
tremely versatile in its application, being completely
free of ‘teething troubles,” and being very solidly estab-
lished in the market. The program as presented is
specifically designed to be easy to use, understand
and modify rather than to be elegant or compact—the
skilled programmer or mathematician will find num-
erous areas where coding can be improved to increase
speed or efficiency at the expense of clarity. Normally
the program takes a couple of seconds to compute an
interval; this would mean that a long trajectory with a
small interval could take over half an hour to run. To
lessen this time a special mode is available that uses
error limits to reduce this by about a factor of twenty
(at a small cost in accuracy). If the programmer has
access to one of the Basic language compilers currently
available, these running times can be roughly halved.

Beginning at line 180, the program stores the coordi-
nates of the drag function curve in the arrays M(x) and
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K(x) where M(x) represents the Mach no. and K(x)
represents the value of the drag coefficient at that
particular velocity. In the program listing given, for
example, the values given for M(27) and K(27) mean
that a Mach no. of 2.05 the drag coefficient of this
particular bullet is .231. If values of other drag func-
tions are required they can be taken from the tabula-
tions on page 67; an experienced programmer can easily
write a subroutine to access them from disk in the
interests of efficiency. The program begins by asking
the user to input values for the initial conditions for
the trajectory. Those for the initial velocity, angle of
departure, caliber, and mass are considered to be self-
explanatory. The form factor is usually set to 1.00 at
the beginning of an investigation, though this will
change as the work progresses. The integration inter-
val, or time step at which we will compute the position
of the projectile, is normally set to .1 to .25 seconds
to begin with; the shorter the interval the greater the
accuracy but the longer the time it will take to complete
the computations. Itis suggested that the user normally
respond ““Y"’ to the option for auto setting the intervals
as this speeds up the program considerably by adjusting
the integration interval to suit the user’s specifications
for accuracy. The normal value for the error tolerance,
i.e. the difference in the final velocity of the projectile
in the second and third predictions of the integration
procedure, is about .03 M/sec, although as the program
will on occasion exceed this value a smaller figure than
is actually desired should be used. Although large
convergence errors are relatively serious if they occur
early in the trajectory, their effect is very greatly dimin-
ished as the shell gets closer and closer to ‘home.’
The air density factor is typically set to 1.00, subject
to change as required to adjust for small variations in
meteorological conditions. The height is usually set to
0 meters, as most trajectories are assumed to begin
and end at sea level, although other values can be en-
tered as required, a feature that is useful if the effects
of bombing from airplanes are to be simulated. By
setting the height equal to the altitude of the aircraft, the
angle of departure to zero (for level bombing) and the
initial velocity to the aircraft ground speed, the pro-
jectile is effectively converted into a bomb. As was
mentioned earlier, the density of the atmosphere de-
creases with increasing altitude; the equation by which
this decrease is approximated for ballistic purposes is
the altitude density function. The program allows the
user to select any one of three of the most common
functions (listed in chronological order) for use in his
computations, reprints all the initial conditions for
reference, then halts until the key ‘G,” for ‘Go’ is
pressed. When this is done, the program automatically
prints out the values for time in seconds, range in
meters, height in meters, angle in degrees, and velocity
in meters/second for each interval until the altitude is
below sea level, whereupon it prints out the final
characteristics of the trajectory as obtained by three
point interpolation and halts.

The program is entirely written for data entry and
manipulation in the metric system. For those users
who still wish to use the Imperial system for computa-
tions, it is suggested that the program be modified to
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input data in Imperial units, convert it immediately to
metric for use in internal operations, and convert it

~ back to Imperial units immediately before presentation

to screen or printer.

Examples of Actual Use of the Program

Although the program can be used to accurately
simulate the performance of any weapon given the
initial conditions of the trajectory, in general it will
not match the results of actual test firings or existing
range tables unless it is calibrated first. This procedure
is exactly analogous to that used to construct the range
table in the first place, except that instead of using
test firings, we use what we know of the actual per-
formance of the weapon as a benchmark instead.
Readers should be cautioned that in running the ex-
amples below they should not expect to obtain EX-
ACTLY the same results as those shown; first because
the examples were run on an earlier version of the
program than the one listed, and also because internal
processing techniques vary somewhat from one micro-
processor type to another; nonetheless the results
should be very close to being identical, and serve
perfectly well for illustration.

For a first example, let us attempt to reconstruct
the range table for the U.S. 16 in./45 rifle used on
the U.S. Navy’s Colorado class battleships, which
had an initial velocity of 2520 ft/sec and a projectile
weight of 2240 Ib. Although we will use the official
range table (OP 750) as a reference, we will assume
for the purposes of the exercise that we know only
the maximum range of the weapon and the elevation
required to reach that range—this is data fairly com-
monly available. The maximum range of the rifle is
given as 40,600 yards at 46 deg 26 min elevation.
Converted to metric units, the characteristics of the
rifle and projectile become: Mass = 1016.057 kg, Initial
Velocity = 768.096 M/sec, caliber = 406.4 mm, and
range = 37124 Meters; the angle of elevation is of
course unchanged, but should be converted to its
equivalent decimal value of 46.4166 degrees. As the
projectile is quite ‘new,” we will assume drag function
type 8, and because the range table is American, we
shall use the U.S. standard altitude/density function.
The ‘auto set’ option is used, with an error tolerance
of .01 M/sec. In the absence of other information,
we set the form factor and the air density factor equal
to 1.00, the elevation to 0 meters, and the integration
interval (which will change as the trajectory pro-
gresses) to .10 seconds.

The program is loaded into the computer and run
using the values just developed; the error messages
presented can be safely ignored as our tolerance was
selected as being considerably below the .03 M/sec
normally used. In a couple of minutes, the program
halts and presents all terminal information for the
trajectory, but at this stage we are only interested in
the range, here about 36893 Meters. Considering that
this result is obtained as a first approximation, this is a
remarkably good prediction, varying from the ‘official’
value by only about 200 meters—Iless than a shiplength
in many cases. If we had chosen another drag function
for the projectile, the match would not have been
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nearly as good at this initial stage, although the form
factor would be somewhat correct for this later.

As the predicted range is marginally under the of-
ficial range, it appears that the real projectile was very
slightly more streamlined than the one in the program
—we therefore decrease the form factor a hair, say to
.95. and run the whole trajectory again with all other
conditions the same. The terminal range for the new
trajectory is 37774 Meters, which effectively “brackets’
the official value for range. Over such a small interval
the relationship of the form factor to range can be as-
sumed a straight line function for all practical purposes,
thus a rather simple linear interpolation formula (or a
graphical plot) allows us to determine the actual form
factor of the projectile at this particular range to be
.9868. As a check, we run the trajectory again with the
new form factor to obtain a range of 37116 Meters—
virtually a perfect fit. The equivalent relationships
of the other terminal characteristics are given below:

Comparison of Actual and Computed Values

RANGE: Computed = 37116; Actual = 37124 (ratio
= .9997)

TERMINAL VELOCITY: Computed = 481.4;
Actual = 495.3 (ratio = .9719)

ANGLE OF FALL: Computed = 56.391; Actual =
55.966 (ratio = 1.008)

TIME OF FLIGHT: Computed = 97.27; Actual =
96.10 (ratio = 1.012)

As can be seen, these values are in most cases within
a couple of percent of the originals (see note 2).

The next step in the procedure is to mathematically
‘fire’ the projectile at angles of elevation of our choice
until we have enough points to interpolate the final
conditions for any range of interest, in this case assum-
ing that the form factor is constant over range. Using
this method over the entire range from 0 to 32000
meters, the differences between the computed and
actual table rarely exceed two per cent. In real life it

Note 2: Readers who are ambitious at this point might wish to use
the same methods as given above to attempt to match the sample
range given on page 59. In this case it will be found that the ap-
plicable form function is equal to 1.10 and the computed terminal
velocity at that range is 475.2 m/s against 456.3 m/s in the range
table, an error (i.e. mismatch) of just over four percent. The likely
reason for this apparent discrepancy is instructive, and well worth
elucidating here. In the U.S. Navy of the 1930s, it was still standard
practice to use the Gavre function for all trajectory computations
with a form factor of about .61 to compensate for the newer more
streamlined projectiles then in use. Kdl with i of .61 is not really
equivalent to Kd8, however, and thus irreducible errors occurred.
It is worthwhile to note in this context that until the advent of rather
advanced radar systems and projectile-borne radio transmitters
during World War 11, there was essentially no way to check the
actual values of any of the terminal conditions of any long range
trajectories, excepting range and time of flight. Other functions were
in effect “‘taken on faith.” Thus the “‘error” in terminal velocity
might not represent an error at all in the real sense—it is most
likely an artifact of small differences in mathematical technique,
and in the choice of drag function and form factor.

A much closer match to the actual range table values will be found
in this case by using the Kd1 form factor and, in this particular in-
stance, aform factor of .63. For reference the bullet used in this range
table was likely one of the 16 in. Mark III series, 3.55 calibers long
with a 7 C.R.H. tangent ogive, a flat base, and a .166 caliber meplat
at the nose.
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was often found that the form factor changed slightly
with changes in the angle of elevation due to variations
in projectile yaw. Recall that the drag function curves
express the drag of the projectile at zero yaw, that is
with the shell traveling exactly point forward, although
the spin of a projectile fired from a rifled gun (perhaps
paradoxically) causes it to yaw a variable amount par-
tially determined by the curvature of the trajectory.
Modern computational methods have no difficulty in
taking the effects of projectile yaw into account, but
the variables involved are complex, obscure, and for
most projectiles designed before 1950, unknown. As a
rule of thumb, for normal spin stabilized ammunition
the form factor varied approximately linearly with
elevation, the value of 0 degrees angle of departure
being about nine-tenths of that at 45 degrees. The values
for the terminal conditions obtained in the series of
test firings above can be interpolated into units of equal
range by any one of a number of methods—if all else
fails a graph can be made and the terminal conditions
picked off from that. Skilled programmers will find no
difficulty in designing subroutines to do this auto-
matically, formating the output as required.

As another example, let us examine the use of the
program in simulating the effects of bombing from
airplanes. During the attack on Pearl Harbor, the
Japanese used high level horizontal bombers to aug-
ment their torpedo attacks on the U.S. battleships
in battleship row. One of the bombs from this force
struck the top of turret III on the USS Tennessee
(BB-43) and penetrated the 127 mm. thick turret top,
though fortunately (or unfortunately, depending on
your point of view), it did not detonate high order.
The master ballistics program can be used to attempt
to determine the terminal characteristics of the bomb
that did this damage. The projectiles dropped on the
Tennessee were Type 99 no. 80 Mark 5 bombs re-
manufactured from obsolete 4lcm Mark 5 armor-
piercing bullets originally intended for Nagato and
Mutsu. The weight of the bomb was 744.35 kg (exclud-
ing the tail assembly, and its maximum diameter, or
‘caliber’ was 410 mm; they were (apparently) dropped
from Nakajima B5N2 (‘KATE’) aircraft from about
10000 feet. We will assume the Japanese flew at the
nominal metric height of 3000 Meters, and that the
velocity of the aircraft was 200 knots at the time of
the drop—this is very nearly 100 Meters/sec. Total
estimated weight is 800 kg, allowing for tail assembly,
and, because WW II vintage bombs were usually
not too streamlined, drag function Kdl is chosen. We
load the program and input variables as follows:
Initial velocity = 100 M/sec, Angle of Departure = 0
degrees, Projectile Caliber = 410 mm, Projectile mass
= 800 Kg, Form Factor = 1, Integration interval = .10
seconds, Auto Set Intervals = Y, Error Tolerance =
.01 M/sec., Air Density Factor = 1, Altitude = 3000
Meters, Density Function = U.S. Pre-WW Il Standard.
After ‘G’ is pressed the program runs automatically,
giving us the terminal conditions: Range = 2501
Meters, Altitude = 0, Terminal Velocity = 252.9
Meters/sec., and Angle of Fall = 68.42 degrees. There
is little we can do to check this information, but
BuShips War Damage Report #22 covers the damage
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in detail, and gives the angle of fall as about 75 de-
grees. This is reasonably close to the predicted esti-
mates of our program, but not as close as we might
like. There are several possible explanations for the
discrepancy, assuming the program is correct. The
most likely error is in our estimate of aircraft speed.
The BuShips estimate of the angle of fall was apparently
based on the assumption that the bomb carried away
part of the after starboard yard of the mainmast during
its fall. Assuming this is correct, and that the bomb
was not deflected by this initial impact, if the aircraft
were flying at its cruising speed of 142 knots (c.
75 M/sec.) rather than the 200 knots we used in our
initial approximation, the angle of fall would become
approximately 73.8 degrees, almost exactly the value
required, with a terminal velocity if 244.6 M/sec.

This example was quite deliberately chosen to il-
lustrate clearly that the value of the OUTPUT of the
program is primarily defined by the known values and
assumptions used for the INPUT, as the hoary old
computer acronym ‘GIGO’ (Garbage In Garbage Out)
explicitly wams. In this case, it would be irresponsible
to accept the thesis as proven until more research were
done into the flying and bombing characteristics of the
Japanese bombers at Pearl Harbor. If this research
failed to confirm our hypothesis on aircraft speed, then
the source of the discrepancy must be sought (dand
found), elsewhere.

Graphical Methods

For those readers who are not ‘‘computer compat-
ible”” for whatever reason, a graphical method can be
used to obtain trajectory solutions albeit with some
loss in accuracy. A package has been prepared com-
prised of nine sheets plotting angle of fall and terminal
velocity vs range for initial velocities of 600 M/sec to
920 M/sec at 40 M/sec intervals, and three *‘calibration”
sheets used to determine the ballistic coefficient for the
initial (known) trajectory. Let us use the chart set to ob-
tain the terminal characteristics of the 16 in./45 rifle
illustrated earlier, for a range of 24500 meters. The
first step in the process is to compute the value for
the common (not the natural!) logarithm of the bal-
listic coefficient, or, as it is abbreviated, “Log C.”
The easiest method to accomplish this is to use one
of the calibration charts provided; in this case the one
for 45 degrees nominal angle of departure is as close
as we can come. Refer to figure 5. From the maxi-
mum range of 37.124 Km along the bottom, draw a
vertical line up until it reaches the appropriate point
in the group of velocity curves for 768 M/sec. From
this point draw a horizontal line left to the ordinate of
the graph to read off the value of Log C as approxi-
mately 1.23. If desired, Log C can be obtained by
direct computation as follows, although the computa-
tion method will not automatically adjust for the effect
of the form factor as does the graphical one. Note that
as the charts were prepared from English system tables,
the computation must be done on English or “Imperial”
units. Our bullet weighs 2240 Ibs and its caliber is 16 in.
so using our previous equation for the ballistic co-
efficient, C = W/i D?), the nominal ballastic coefficient
is 2240/(1 x 16 x 16) or 8.75 and the log of this is .942.
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Note that this value assumes a form factor of 1.00,
which would only be true for a type 1 projectile,
for which the charts were prepared. In order to obtain
a value equivalent to the 1.23 obtained in the graphical
method above, a form factor must be included by
estimation. In this case to obtain Log C of 1.23, the
appropriate form factor would be approximately .515.

For many weapons designed in metric system coun-
tries, a solution chart will be found which corresponds
exactly to the initial velocity required. As we have
(deliberately) chosen an American weapon, the initial
velocity is not an even value in the charts, and inter-
polation must be used. Proceed now to figures 6
and 7 which are the “‘bracketing” solution charts for
metric velocities just above and below the 768 M/sec
of the rifle we are using. In this illustration we will
use linear interpolation to obtain terminal values;
greater accuracy could be obtained by using additional
solution charts to plot a curve from which actual termi-
nal values for 768 M/sec initial velocities could be
obtained by inspection.

On figure 6, draw a line vertically upward from
the nominal range of interest; in this case 24.5 Km. On
the sheaf of curves for terminal velocity, which begin
on the left hand side of the chart at 760 M/sec, find
the lines corresponding to Log C of 1.2 and 1.4,
and sketch in the approximate line for 1.23 by eye,
as is shown in dashed lines on the graph. From the
point where this line intersects the vertical range line,
proceed left to the vertical scale to read off the termi-
nal velocity as approximately 471 M/sec. Similarly,
from the sheaf of lines for angle of fall, a line can be
located to indicate approximately 25.3 degrees. The
reader is encouraged to follow the same process on
figure 7, which has not been annotated, to obtain
the terminal values of 496 M/sec terminal velocity and
22 .8 degrees angle of fall. Linear interpolation between
these two sets of figures gives final estimated values of
476 M/sec for terminal velocity and 24.8 degrees for
angle of fall. Actual range table values are 457.2 M/sec
and 26.31 degrees, so the error averages about 5 per
cent. This appears to be unusually high; rather exten-
sive checking by a correspondent in England indicates
the typical prediction error to be considerably lower.
Part of the error in this case is due to the simple
linear interpolation scheme used, partly due to the fact
that no allowance was made for the 1.5 degree dis-
crepancy in the angle of departure during the calibra-
tion stage—the remainder is likely inherent unto the
graphical system itself. Unfortunately, space restric-
tions prevent reproduction of the complete chart set
in this article. A complete set of charts reduced to
about 18 x 24 mm can be obtained from the author for
$1.50 US, incuding postage and handling ($2 outside
North America).

A General Conclusion

Exterior ballistics is not a simple subject. The
author (and the editors) are painfully aware that a large
proportion of Warship International readers, through
no fault of their own, will find these contents tough
going, and perhaps even totally unintelligible. Further,
severe space limitations have resulted in inevitable
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over simplification in places and compression to in-
comprehensibility in others. If the work is critical,
extreme caution should be used until the accuracy of
the results can be confirmed through alternative
sources. Readers with questions and comments are
encouraged to contact the author directly at the ad-
dress shown at the header of the program listing. I
would also appreciate hearing from any I.N.R.O.
members who have modified the program to run on
other micro-computers, and in languages other than
Basic, so that it might be passed on to others who
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could not otherwise translate it for themselves; and
from any member who is fluent on both the Fortran
and Basic languages, who might be willing to help
translate a number of related programs as yet unavail-
able in Basic. The program given in this paper can
be freely reproduced if used in strictly non-commercial
applications. For those readers who might own an
Apple computer, I will duplicate the master program
on a disk or tape if they supply me the necessary
blank media.

Variable List for Various Drag Functions

MACH NO. KD MACH NO.
.9 .0825 -
.7 .0825 .7
.8 .0825 .8
.9 .0825 .9
.95 .0%94 .95
1 .14 1
1.03 172 1.05
1.1 . 175 1.1
1.18 1753 1.135
1.2 17253 1.2
1.25 . 169 1.25
1.3 166 1.3
1.35 . 1625 1.353
1.4 1605 1.4
1.45 . 137 1.45
1.5 153535 1.5
1.55 181 1.55
1.6 . 149 1.6
1.65 . 146 1.65
1.7 .143 1.7
1.7% .14 1.75
1.8 .138 1.8
1.85 . 136 1.85
1.9 . 1333 1.9
1.93 .132 1.95
2 129 2
2.05 .127 2.05%
2.1 125 2.1
2.15 123 2.1535
2.2 121 2.2
2.25 119 2.25
2.3 1178 2.3
2.35 1186 2.35
2.4 .1145 2.4
2.45 112 2.45
2.3 111 2.9%
2.5535 .10°9 2.5%
2.6 .108 2.6
2.63 .1046 2.6535
2.7 .105 2.7
2.75 .104 2.75
2.8 .103 2.8
3.25 .09 3.25
3.8 .08 3.8
4.1535 .07% 4.15
4.4 .0738% 4.4

MACH NO VS KD8 FUNCTION

XD MACH NO. XD
.0825%8 5 . 052
.0825 o7 052
.08235 .8 .0538
. 0825 .9 .0589
.094 .95 .06712
.14 1 .09127
172 1.05 11125
L1753 1.1 1227
175 1.15 12982
1725 1.2 .13429
1679 1.25 1368
166 1.3 .13808
. 1625 1.35 .13837
. 16035 1.4 .138074
157 1.45 .13736
. 1535 1.5 1366
151 1.55 . 13554
. 149 1.6 .1344
.14¢ 1.65 .1333
.143 1.7 1319
.14 1.75 .1307
.138 1.8 1294
-136 1.85 .128
-1335 1.9 L1268
-132 1.95 1253
129 2 124
127 2.05 .1228
1235 2.1 12155
.123 2.15 .12035
121 2.2 119
119 2.25 L1178
11735 2.5 1133
116 2.75 .1085
.11435 3 L0975
112 3.5 . 0865
111

.109

.108

.106

.105

.104

.103

.09

.08

.075

.0735

Continued #»

MACH NO VS KD (1938 LAW)
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Variable List for Various Drag Functions—Continued

KD (SPHERE}

(1940 LAW) MACH NO VS KD (ARROW) MACH NO VS

VS KD
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IPRINT CHR$(27);%J,100,900,5"

IPRINT CHR$9);*132N"
1LIST

10 HOME : VTAB 3: HTAB 4: INVERSE : PRINT "MASTER EXTERIOR BALLISTICS PROGRAN"
20 NORMAL
30 PRINT "tRatanasaneaagaa aean et aee aaagaaannanes

40 PRINT * COPYRIGHT (C) (1983) V. J. JURENS"

50 PRINT * 62 FIDLER AVENUE"

60 PRINT * WINNIPEG, MANITOBA, CANADA®

70 PRINT * R3J R7"

80 PRINT * PH. 204-837-3125"

90 PRINT "tRRRRetaReaaaaeaagaReRa v e e AR ARARARR AN
100 PRINT

110 PRINT “ PRESS ANY KEY TO LOAD THE PROGRAM™: PRINT
120 GET A$

130 DIM M(S0): DIM KG0): REM  DIMENSION VARIABLES FOR M=MACH NO. AND K= DRAG COEFFICIENT FROM GRAPH OF AMERICAN XD8 FUNCTIO
N

140 KO = JKIO = 0825M(D = S:K(D = 0825:MQ) = 7KQ) = 0825:M3) = 8KD) = 0825H@ = FK@ = 0825MO) =
I3KG) = 0%

150 M6) = LK) = 140:MP) = LOSK(D = 172:M8) = LLK®) = 175:HO) = LISK® = 175:MU0) = L2KA0 = .1725:M11
)= L25KAD = 1696

160 HAD) = L.30KAD) = 166:HUD = 135KAD = 1625HUD = 140KAD = 160SMUS) = 1.45:KAD = 157

170 H1é) = LIK(E) = 1535HAD = 1L55KAD = ISLMAB) = LAKUS = MIMAN = 165KAN = 146HAD = L7KQ0 =
J4THQD = 175KQD = 14

180 M2} = 1EKQD = 138MQD = 1.85KQD = 136:MAO = 1.9KQD = 1335:MAS = 1.95KQS) = A32:HQ6) = 2:KQ26) = .
129HQN = 205XQD = Q7MY = LIGKGE = 125MQ9 = 21SKQY = 12IHGO = 2.2K60 = 12

190 MGD = 2.25KGD = 119HGY = 2.3KGD = 7MY = 235KGD = 16MGD = 24K00 = 1145HAS = 2.43K3
= MG = 25K36) = .11

100 KD = 2.73:K(D = 104MUD = 2.8:KMD = 103MED = 32543 = 09MAD = 38K40 = 0B:MUS) = LRER (CHE
073:M(46) = 4.40:K48) = 0735

210 PRINT

220 RD = 57.293779513: REM DEG/RAD CONVERSION

230 DF = 1.2250: REM  DENSITY IN KG/MA3

240 79 = 1.34279408E - 18:23 = - 9.87941429E - 1422 = 3.90848964E - 921 = - 9.49888125E - 5: REM  POLYNOMIAL TERMS FOR I
CAO STD ATMOSPHERE

230 INPUT " INPUT INITIAL VELOCITY (M/SEC) *;VO

260 PRINT

270 INPUT ° INPUT ANGLE OF DEPARTURE (DEG) “;LD

280 PRINT

290 INPUT * INPUT PROJ. CALIBER (MM} *;D5

300 D = DS / 10: REM  CAL MUST BE IN CENTIMETERS FOR FURTHER CALCS

310 PRINT

320 INPUT “ INPUT PROJ. MASS (KG) M

330 PRINT

340 INPUT * INPUT FORM FACTOR *;EF

350 PRINT

360 INPUT " INPUT INTEGRATION INTERVAL (SEC) *;I

370 PRINT

380 INPUT " AUTO-SET INTERVALS? (Y/ND “;IC$: PRINT

390 IF ICS = “Y* THEN INPUT " INPUT ERROR TOLERANCE (M/SEC) “:ET: PRINT

400 INPUT “ INPUT AIR DENSITY FACTOR "AD

410 PRINT

420 INPUT " INPUT ALTITUDE (HETERS) ";AQ

430 PRINT

440 PRINT “ INPUT CHOICE OF DENSITY FUNCTIONS:"

450 PRINT "  US. PRE-1945 STD= 1"

440 PRINT "  BRITISH STANDARD = 2"

470 PRINT *  1.C.A.O0 STANDARD = 3"

480 INPUT PV

490 HOME : VTAB 3: HTAB 4: INVERSE : PRINT "SUMMARY OF INITIAL CONDITIONS*

500 NORMAL : PRINT

310 PRINT * INITIAL VELOCITY = *;VO0;" METERS/SEC."

320 PRINT “ ANGLE OF DEPARTURE = “;LD;* DEGREES®

330 PRINT " PROJECTILE CALIBER = “;D5;" MM"

340 PRINT “ PROJECTILE WEIGHT = ";M;" KG*

330 PRINT " FORM FACTOR = “FF

360 PRINT " AIR DENSITY FACTOR = “;AD

370 PRINT “ INTEGRATION INTERVAL=";[;* SEC"

380 PRINT " INITIAL ALTITUDE = “;AQ;" METERS"

390 PRINT " *X¢

600 IF PW = 1 THEN PRINT * US. PRE-1945 DENSITY FUNCTION®

610 IF PW = 2 THEN PRINT “ BRITISH STD. DENSITY FUNCTION®

620 IF PW = 3 THEN PRINT " LC.A.0. DENSITY FUNCTION*

630 PRINT : PRINT : INVERSE : PRINT “PRESS 'C' TO GO"



¢40 NORMAL : PRINT "(ANY OTHER KEY WILL RECYCLE): PRINT Warship International

650 GET PP$

460 IF PP$ ¢ ) "G THEN HOME : GOTO 180

§70 HOME : VTAB 3: HTAB 4: INVERSE : PRINT "TABULAR INTEGRATION OF TRAJECTORY": NORMAL : PRINT

¢80 PRINT "TIME RANGE HEIGHT ANGLE VELOCITY"

490 PRINT "SEC. METERS METERS DEG  M/SECOND"

700 PRINT TT TAB( 8) INT (10 * RG + .5 / 10 TABC 16} INT (10 * AD + 5}/ 10 TAB( 20 INT (1008 * (LD) + .9 / 1000 TAB( 33
INT (1000 * VO + .5) / 1008

710 REM :ABOVE LINE TO PRINT INITIAL CONDITIONS

720 LD = LD / RD: REM CONVERT DEGREES TO RADIANS FOR CALCS

730 REM #tBEGIN NUMERICAL INTEGRATION PROCEDURE**

740 C = M/ GF * AD * D A : REM BALLISTIC COEFFICIENT

750 IF TT = 0 THEN GOTO 830

760 PRINT TT TAB( 8 INT (10 ® RG + .5) / 10 TAB( 16) INT (10 * AQ + 5) /10 TAB( 24) INT (1000 * (L3 * RD) + .5} / 1000 TAB(
33) INT (1000 * VO + .5} / 1008

770 REM :ABOVE LINE TO PRINT TYPICAL CONDITIONS

780 P3 = P2:P2 = P1:P1 = RG: REM RANGE ARRAY

790 03 = 02:02 = 01:01 = VO: REM VELOCITY ARRAY

800 53 = 52:52 = 51:51 = L3: REM ANGLE ARRAY

80 T3 = T2T2 = TUTi = TT: REM TIME ARRAY

820 U3 = U2:U2 = ULU1 = AQ: REM ALTITIUDE ARRAY

830 [IF AO (0 THEN GOSUB 1840

B0YE=YE+ 1

850 IF YE =5 THEN PRINT XE =10

840 REM :ABOVE LINES TO FORMAT PRINTOUT

870 Y = AO: REM SET UP FOR DENSITY

830 G = 9.80645 - (0000030465 * AO): REM ACCEL OF GRAVITY

890 CS = 344 - (084 ® AQ): REM SOUND SPEED (M/SEC)

900 X0 = VO * CO0S (LD): REM HORZ COMPONENT

910 YO = VO * SIN (LD): REM VERT COMPONENT

920 REM :COMPUTE RETARDATION

930 XK = VO / C5: REM MACH NO.

940 FORXI=1TO0 30

950 IF KX = ( M(D THEN GOTO 970

960 NEXT I

970 XD = (KK - MQ - 1) / (M(D - MQ - 1) * (K® - KA - D} + K@ - 1: REM LINEAR INTERP. ON DRAG FUNCTION ARRAY

980 RO = XD * (DF / 10000) * VO A 2: REM RETARDATION IN M/SECAZ

907 = Al + A0

1060 IF PV = 1 THEN GOSUB 1776

1010 IF PW = 2 THEN GOSUB 1790

1020 IF PV = 3 THEN GOSUB 1810

103000 = LL

1040 EO = RO / (C / DO): REM ACTUAL RETARDATION

1050 HO = EO * COS (LD): REM 1ST GUESS AT HORIZ COMPONENT OF RETARDATION

1060 JO = (E0 * SIN (D) + G): REM 1ST GUESS AT VERT COMPONENT FQ RETARDATION

1070 X1 = X0 - (HO * D: REM 1ST PRED. OF HORIZ VEL

1080 Y1 = Y0 - (JO * I: REX 1ST PRED. OF VERT VEL

1090 Vi= SORTLA2+YIAD

1100 L1 = ATN (Y1 / X0: REM 1ST PRED. OF FINAL ANGLE

1110 REM #* BEGIN SECOND PREDICTION tt

1120 M1 = (Y0 + YU / 2: REM ESTIMATE OF MEAN VERT VELOCITY

1130 Al = (41 * D: REM EST. ALTITUDE AT END OF INTERVAL

1140 ¥ = Al + AO: REM  SET UP TO COMPUTE DENSITY FOR ALTITUDE

1156 IF PW = { THEN COSUB 1770

1160 IF PW = 2 THEN GOSUB 1790

1170 IF PW = 3 THEN GOSUB 1818

1180 D1 = LL

1190 XK = V1 / C5: REM  MACH NO.

1200 FORX =1 TO 3¢

1210 IF XK = ( MD THEN GOTO 1230

1220 NEXT I

1210 XD = (KK - M - 1) / QI® - ME - 1) * (K@ - KX - 1) + KX - 1: REX  LINEAR INTERP. ON DRAG FUNCTION ARRAY

1240 R = XD * (DF / 10008) * Vi A 2: REM  RETARDATION IN M/SECAZ

1250 Et = R1 / (C / D1: REM ACTUAL RETARDATION

1260 Hi = E1 * COS @i REM 2ND GUESS AT HORIZ RET. COMPONENT

1270 J1 = (1 * SIN (LD + G: REM 2ND GUESS AT VERT RET. COMPONENT

1280 H2 = (HO + HD / 2: REM 3RD EST OF HORIZ RET COMPONENT

1290 J2 = (JO + J / 2: REM 3RD EST OF VERT RET COMPONENT

1300 X2 = 30 - (H2 * D: REM 2ND PRED OF HORIZ VEL

1310 Y2 = YO - (J2 * I: REM 2ND PRED OF VERT VEL

1320 V2 = SOR (€2 A 2 ¢ Y2 A 2): REM 2ND PRED OF FINAL VELOCITY

1330 L2 = ATN (Y2 / I2): REM 2ND PRED OF FINAL ANGLE

1340 REM #+ BEGIN THIRD PREDICTION *t

1350 M2 = (Y0 + Y2) / 2: REM 2ND EST OF MEAN VERT VEL

1340 A2 = M2 * I: REX EST ALT AT END OF INTERVAL

1370 ¥ = A2 + AO: REM.  SET UP FOR DENSITY CALC

1380 IF PV = { THEN GOSUB 1770

1390 IF PW = 2 THEN GOSUB 1790

1400 IF PV = 3 THEN GOSUB 1810

1410 D2 = LL



1420 KK = V2 / CS: REM MACH NO

1430 FOR X =1 TO 50

1440 IF KK = ( MOD THEN GOTO 1440

1450 NEIT X

160 KD = (KK - MX - 1) / (MO - MQX - 1) ¢ (XQ - KO - 1) + K& - 1): REM  LINEAR INTERP. ON DRAG FUNCTION ARRAY

1470 R2 = KD * (DF / 10000) * V2 A 2: REM RETARDATION IN M/SECA2

180 E2 = R2 / (C / D2): REM  ACTUAL RETARDATION

1490 H3 = E2 * COS @2: REM  4TH GUESS AT HORIZ RET. COMPONENT

1500 J3 = (E2 * SIN @) + G: REM  4TH GUESS AT VERT RET. COMPONENT

1510 H4 = (HO + K3 / 2: REM STH EST OF HORIZ RET. COMPONENT

1520 J4 = JO + J3 / 2: REM STH EST OF VERT RET. COMPONENT

1330 X3 = X0 - (H4 * D: REN 3RD PRED OF HORIZ VEL

1540 Y3 = YO - (J4 * : REM 3RD PRED OF VERT VEL

1350 V3= SQR (3 A2+ Y3A2:REM 3RD PRED OF FINAL VELOCITY

1560 L3 = ATN (Y3 / X3): REM 3RD PRED OF FINAL ANGLE

1570 M3 = (YO + Y3 / 2: REM 3RD EST OF MEAN VERT VEL

1380 M4 = (X0 + ¥3) / 2: REM 3RD EST OF MEAN HORIZ VEL

139 FH = M4 * I REM  FINAL HORIZ POSN

1600 FV = M3 * I: REM  FINAL VERT POSN

1610 LI = I: REM PUT INTERVAL IN SCRATCH VARIABLE *BEFORE* CHANGING VIA AUTO SET

1620 REM :** END OF 3RD PREDICTION t®

1630 REM :DO AUTO SET OF INTERVAL

1640 IF ICS { ) “Y* THEN GOTO 1680

1650 IF ABS (V3 -V ( S®ETTHENI=1113

1660 IF ABS (V3 -V2)) B*ET THENI =11 §

1670 IF ABS (V3 - V2) ) ET THEN INVERSE : PRINT "ERROR TOLERANCE EXCEEDED": NORMAL :I = I / 2: REN IF ERROR EXCEEDED WARN
AND REDUCE INTERVAL

1680 REM :2* SETUP TO LOOP BACK t*

1490 IF VE ) ME THEN ME = VE: REM LINE TO FIND LARGEST VEL ERROR

1700 VE = ABS (V2 - V3): REM ERROR IN FINAL VELOCITY PREDICTIONS

1710 V0 = V3

1720 LD = L3

1730 A0 = AO + FV: REM  FINAL ALTITUDE

1740 BG = RG + FH: REM SUM TOTAL RANGE

1730 TT = INT (1008 * (TT + LD + .5) / 1000: REX SUM INTEGRATION INTERVALS FOR TOTAL TIME & CORRECT INTERPRETER ROUNDOET E
RROR

1760 GOTO 740

1770 LL = 10 A - (000045 * 1

1780 RETURN

1790 LL = .1 A (141 * (Y / 30480

1800 RETURN

IGIOLL=Z4'YA4+Z3ﬂYA3+ZZ*YA2+ZI'Y+1

1820 RETURN

1830 REM BEGIN FINAL INTERPOLATION ROUTINE

1840 Y(D) = P3YQ) = P2Y(D) = Pt

1830 X(1) = U3:XQ) = U2XD = U1

1840 GOSUB 2050

1870 RL = B

1880 Y() = Q3:YD) = Q2:¥(D) = Q1

1890 GOSUB 2050

1900 SL = B

1910 () = S3YQ = S2:Y(3) = 51

1920 GOSUB 2050

30AL = B

1940 Y() = T3YQ) = T2V = T1

1930 GOSUB 2050

10 TL = B

1970 PRINT : PRINT : HTAB 4: INVERSE : PRINT “INTERPOLATED TERMINAL CONDITIONS®: NORMAL - PRINT

1980 PRINT "RANGE = *; INT (RL);" METERS"

1990 PRINT "HEIGHT = 0 METERS"

2000 PRINT "VELOCITY = *; INT (10 * 5L + 5) / 10;" METERS/SEC.*

2010 PRINT “ANGLE OF FALL = ;AL * RD;" DEGREES®

2020 PRINT “TIME = *; INT (TL * 100 + 5) / 100;" SECONDS*

2030 PRINT : HTAB 10: PRINT "FINISHED WITH PROBLEM"- END

2040 REM BEGIN 3 POINT ROUTINE

00P=3

200 B =0

WN0A=0

2080 FORJ =1TOP

090Ta1

2100 FORI =1 TO P

M0 IF 1 = J THEN 2130

U T=T* A -ID/AWD - XD

2130 NEXT 1

M0B=B+T*YD

50 NEXT J

1140 RETURN
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