N. H.
M. P.
C.J

Brown,
Fabisch, and
Rifenberg

Introduction and Overview

59

Copyright © 1975 American Telephone and Telegraph Company
THE BELL SysteM TEcHNICAL JOURNAL
SAFEGUARD SUPPLEMENT
Printed in U.S.A.

SAFEGUARD Data-Processing System:

Introduction and Overview

By N. H. BROWN, M. P. FABISCH, and C. J. RIFENBERG
(Manuscript received January 3, 1975)

This paper provides the background information necessary for under-
standing the other papers in this volume, and serves as an introduction
to them. It provides a brief history of SAFEGUARD, discusses the hardware
and the software involved, and then focuses on the technical and managerial
approaches to producing the software.

l. INTRODUCTION

SAFEGUARD is an antiballistic missile (aBm) system primarily de-
signed to respond to attacks by intercontinental ballistic missiles. It
is composed of three major subsystems: missiles, radars, and data
processing and control. Incoming missiles, after being detected and
tracked by the radars, are intercepted and destroyed by defensive
missiles. The radars and defensive missiles are controlled by the data-
processing system.

Development of the large, real-time data-processing system for the
Sarecuarp Ballistic Missile Defense System was a significant under-
taking from any point of view. Developing a system with unique
processing and availability requirements led to the involvement of
thousands of people and a very substantial commitment of resources.
The resulting multiprocessor data-processing system entailed the de-
velopment of new and sophisticated algorithms, the design of unique
testing programs, and the extensive employment of simulations.

These SAFEGUARD papers primarily emphasize the techniques and
methods of a software development effort that produced millions of
lines of code. Although the classified nature of the project precludes
description of a few of the innovations in both software and hardware,
most of the important problems encountered involved no security
questions and the objective of these papers is to serve the data-
processing community by imparting some of the lessons that were
learned.

1l. OVERVIEW
2.1 Historical context

At Bell Laboratories, research and development on the first anti-
ballistic missile (aBM) system, the Nike-Zeus, began in 1957. The
data-processing hardware requirements for NIKE-ZEUS were met by
the development of special-purpose digital computers, an outgrowth
of the use of analog computers in previous air defense systems. NIKE-
75us field test sites were established in New Mexico, California, and
the Pacific. Applications programs and techniques were developed for
using digital computers as controllers for tracking and missile guidance,
for trajectory estimation and diserimination, and as planning and re-
source allocators in battle management. These application programs
were installed and tested at the field sites during the late 1950s and
early 1960s. In 1962, an historic intercept was achieved when a NIKE-
ZEUs missile launched from Kwajalein Atoll in the Pacific successfully
intercepted a Trran 1ceM launched from Vandenberg Air Force Base.

With the termination of the NIKE-ZEUs project in 1963, N1ke-X
system development began. This system required a highly reliable
data-processing system (pps) that could support a peak throughput
of about 10 million instructions per second and a peak 1/0 transmission
for radar control of about 70 thousand 64-bit words per second. To
achieve these requirements, a special-purpose digital computer was
designed using integrated circuits and core storage techniques. A field
test site for the N1xe-X development was established at Meck Island,
part of the Kwajalein Atoll. Testing at this site has had significant
impact on the development program.

In 1967, the basic design of the Nike-X machine was incorporated
into the SENTINEL ABM system. Throughput requirements were met by
a multiproeessor capable of using as many as ten processors.

Originally, the goal of SENTINEL was the protection of cities from a
ballistic missile attack. In 1969, new objectives, including the protec-
tion of U. S. MINUTEMAN ICBM bases rather than cities, were an-
nounced. This redirection was indicated by a new system name,
SAFEGUARD. SENTINEL equipment remained unchanged. The field test
site for N1kE-X now became the Meck Prototype System. Its objec-
tives were redefined from those of an R&D program to those of sup-
porting SAFEGUARD design. A detailed test program was established
for the Meck system, providing indispensable support for SAFEGUARD
in hardware, software, and algorithm development, as well as multi-
processor operation and reentry environment characterization.

The entire software development of SAFEGUARD has been directed
at the specific needs of a real-time, high-throughput, very reliable

$10 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

computing system. The applications programs, operating system, sup-
port software, and data-reduction facilities were all designed to meet
these objectives.

2.2 System description

There are three types of sites in the SAFEGUARD system: Perimeter
Acquisition Radar (par), Missile Direction Center (mpc), and one
Ballistic Missile Defense Center (8Mpc). Figure 1 provides a functional
overview of these sites. Although several par and mMpc sites were
planned, only one of each is being deployed. The par site utilizes a
single-face, phased-array radar to provide early detection and tra-
jectory data on threatening 1cBms. Functions of this site include long-
range surveillance, detection, and target selection of threatening ob-
jects, and 1cBM-threat tracking for SparTaN intercept. This last
capability significantly increases the long-range SparTAN field of fire.
The par site does not perform missile guidance. The Mpc complex
uses the target trajectory and classification data from the par along

PERIMETER ACQUISITION
RADAR & PAR DATA-
PROCESSING SYSTEM

® S5INGLE—FACE PHASED-
ARRAY RADAR

® LONG—-RANGE
SURVEILLANCE

® DETECTION, TARGET
SELECTION

® TRACK SPARTAN

INTERCEPT
® MULTIFACE PHASED-

ARRAY RADAR é E

® ABM TRACK GUIDANCE SPRINT & SPARTAN
e THREAT TRACK MISSILE FARMS
® SURVEILLANCE

BALLISTIC MISSILE
DEFENSE CENTER
DATA—-PROCESSING
SYSTEM

MISSILE-SITE
RADAR & MDC DATA-
PROCESSING SYSTEM

® SAFEGUARD
OPERATIONAL
CENTER

Fig. 1—SAFEGUARD system.

INTRODUCTION AND OVERVIEW S11

with additional data supplied by its multiface phased-array radar.
This site provides additional surveillance and target tracking and also
performs the functions of track and guidance for the SPRINT and
SPARTAN missiles. Both ParR and mpc sites report to the BmDC, a
central command center. The BMDC provides a command interface
with other military systems and a means of disseminating command
directives and controls.

The par and Mpc radars are controlled by the data-processing sys-
tems, collocated with the radars. At the pAr and MDC sites, application
programs perform surveillance, tracking, target classification, radar
management and testing, intersite communication, and display func-
tions. Additional application programs at the mpc support the battle
management and missile guidance functions. The BMpc data-processing
system primarily contains display and command/control programs.

Both par and mpc radars are controlled by the pps through the use
of digital commands. These commands are used to control beam
pointing, frequency selection, receiver gating, thresholding, ete. The
SAFEGUARD system design makes use of some constraints on the
combinations of radar operations that can be performed and, there-
fore, on the sequences of pulse transmissions. Appropriate radar com-
mands must be generated by the application programs and sent to the
radar at least every few milliseconds. The radar pulse patterns used
in SAFEGUARD provide a framework for the time design of the real-
time application programs.

2.3 DPS requirements

The data-processing system design was dominated by requirements
for high throughput and stringent availability/reliability constraints;
i.e., requirements supporting a high probability that the system would
be available when required for a mission and highly reliable during the
mission.

The fact that the radar is controlled by the pps contributed signifi-
cantly to both input/output (1/0) and processing requirements. Appro-
priate radar commands must be generated by the application programs
and output to the radar at least every few milliseconds, yet the pps
must be able to complete processing between two radar events. This
contributes to estimates of a peak-load throughput of 10 million
instruetions per second.

Input/output requirements were further increased by a variety of
special-purpose peripherals such as missile controllers and data-trans-
mission controllers for intersite data transmission. The pps was also
required to communicate simultaneously with computing peripherals,
especially disc and tape, as well as to provide status information to,
and receive commands from, system-control personnel.

§12 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

The nature of the application imposed requirements for high avail-
ability ; therefore, a maintenance system was required for fast recovery
and quick fault isolation and repair in the event of a hardware
malfunetion.

Size and complexity increased the problem of verifying the system.
This imposed a requirement for a system exerciser that could be used
to verify as much of the system as practical.

2.4 Tactical site configuration

This section deseribes in detail four aspects of a site pps configura-
tion: hardware, software structure, maintenance and diagnostic sub-
system, and exercise subsystem. Except for the absence of an exercise
subsystem at BMDC, the DPs structure is similar for Mpc, PAR, and
BMDC.

2.4.1 DPS hardware

Figure 2 shows the equipment at the mpc site consisting of a central
computer and associated peripherals. The central logic and control
(cLc) is the multiprocessor computer used to drive each pps. Under
software control, the cLc can be configured into two separate partitions
of arbitrary size, each capable of operating as an independent com-

TO RADAR

RADAR
INTERFACE
CONTROLLER

i

1
CENTRAL LOGIC
AND C(I)NTHOL

PARTITION 1 | PARTITION 2

MAINTENANCE

AND
DIAGNOSTIC I
SUBSYSTEM u ﬂ ﬂ

INTERSITE
Mi - -
RECORDING DISPLAY LAlSJSh:I(-:Ei DATA- ES):JEP';EIRS.IE.
SUBSYSTEM SUBSYSTEM SUBSYSTEMS TRANSMISSION UNITS
CONTROLLERS
TO MISSILE TO OTHER
FARMS SITES

Fig. 2—SAFEGUARD data-processing system equipment.

INTRODUCTION AND OVERVIEW §13

puting system. Application software executes on the larger partition.
Exercise drivers (described below) for the application software and
support activity execute on the smaller partition, which also provides
a pool of spare equipment.

The cLc can be configured with up to ten processors. Single-processor
throughput of about 1.5 million instructions per second is achieved by
a combination of design techniques including instruction execution
overlap and use of high-speed arithmetic algorithms. Instruction over-
lap is achieved by utilization of three asynchronous control units for
instruction fetch, operand fetch, and arithmetic execution. Every
processor has access to each of several read-only instruction memories
called program stores, and several read/write memories called variable
stores. These stores have a memory cycle time of 500 ns and a double
word size of 64 bits to provide a memory bandwidth in excess of that
required for maximum performance of a single processor.

The input/output controller (1oc) controls the transfer of data
between the cLc and its peripherals. Since processors do not com-
municate directly with peripherals, processing and 1/0 can occur
simultaneously. The 10¢ provides full-duplex operation on 16 channels.
Priority circuitry within the controller allows time-multiplexed opera-
tion of the channels. The 10c executes commands from 10c programs
resident in variable store. Both processors and peripheral devices can
initiate 10c program execution.

A timing generator provides a real-time clock and a programmable
mechanism for initiating activities at specified times. It can cause the
initiation of an 1oc program when a specified time of day has been
reached. A status unit provides a means of monitoring, in real time,
the status of any pps unit. It also serves as a central point for the
distribution of control over the Dps.

cLc peripherals are divided into several subsystems. The Main-
tenance and Diagnostic Subsystem and the Exercise Subsystem will
be described later.

The radar interface controller is the primary interface between the
radar and the 1/0 controller of the crc. Control and data words are
exchanged between these two units. The radar control computer
accepts formatted binary words from the cLc and distributes data to
the appropriate radar subsystem where a digital-to-analog conversion
takes place.

The recording subsystem contains the standard computer peripheral
devices: magnetic tape transports, disc memory units, line printers,
and card reader.

A man-machine interface is provided through the display subsystem
which includes cathode-ray-tube displays with light pens, wall dis-
plays, and teletypewriters.

S14 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

Digital data are transferred between sites by means of the intersite
data transmission controllers.

The missile launch subsystems convert cLc commands into control
signals for the collocated and remote missile farms and receive missile
status conditions, encode them, and send them to the cLc.

2.4.2 DPS sofitware structure

The collection of application software used to drive the prs is called
the application process. The application process is built from basic
computing units called tasks, which are single routines with or without
subroutines. The operating system, considered to be part of the
process, schedules tasks from a predetermined, priority-ordered task
list for execution on the next available processor. Onee in execution,
a task is not interrupted before completion except for error conditions.

A bit string associated with each task on the priority-ordered task
list indicates completion of predecessor condition(s) prior to task
execution. The operating system enables execution of the highest-
priority task with all predecessor condition bits set. Thus, an im-
portant part of process design is development of the priority-ordered
task list and the predecessor conditions for each task. The predecessor
conditions fall into three main types:

() Time—Functionally, the programmable feature of the timing
generator is utilized in setting predecessor condition bits.

(#) 1/0 completion—Input/output may be initiated by a processor
or by a peripheral device. In either case, a task does not ‘‘hold”
a processor while waiting for 1/0 completion. Instead, upon 1/0
completion, a predecessor condition bit is set for a designated
task.

(#77) Other task completion—Long-running computations are often
subdivided into several shorter ones. Appropriate sequential
computational requirements are preserved by designating other
task predecessor conditions.

Where possible, the application process is asynchronous, i.e., tasks
are only enabled when data are available to be processed.

2.4.3 Maintenance and diagnostic subsystem (M&DSS)

The m&pss is composed of test equipment and software that sup-
ports digital equipment maintenance. The m&pss verifies the avail-
ability and readiness of peps hardware by conducting nonreal-time,
programmed, diagnostic tests on equipment through an independent
data bus connected to each digital unit. These special m&p data paths
are also used to support other objectives of the m&pss which include
initializing pps hardware and, in the event of a malfunction, auto-

INTRODUCTION AND OVERVIEW §15

matically supporting pes recovery operations. The M&pss also provides
a centralized control point for status monitoring, equipment allocation,
and manual interface with pps software.

The M&pss has two distinet facilities for running diagnostics. The
primary one involves the M&D processor group, which uses a modified
CDC Model 1700 eomputer system to provide fully automatic, high-
speed execution of test programs with automatic interpretation of
results through use of fault-location dictionaries. The other facility
involves the M&D console group, which uses a cathode-ray-tube display
console for manual execution of diagnostics and interpretation of re-
sults. Each facility is linked to all the digital racks in the pps and to
certain digital racks in the radar areas. These data paths provide the
means by which mM&Dss software can access each unit as required for
DPSs initialization, recovery, and diagnostic operations.

2.4.4 System exerciser

A system exerciser was designed for PAR and Mpc sites. It provides
support for development and integration of the applications processes,
evaluation studies that include fidelity validation of various simulators,
and site readiness verification of both local and multisite system
configurations.

1 RADAR
|] T RECEIVER
APPLICATION f
! PROCESSORS 170 |
AND CONTROLLER
| STORES | INTERSITE DATA RADAR SIMU—
gt TRANSMISSION ORDERS | LATED
| l CONTROLLER RETURNS
L CLC PARTITION 1 |
EXERCISE RADAR
CONTROL [~ RETURN
UNIT GENERATOR
———
| —| INTERSITE DATA RADAR ORDERS/
TRANSMISSION RADAR RETURN
| EXERCISE l CONTROLLER GENERATOR ORDERS
PROCESSORS 1/0
AND CONTROLLER L
STORES I
’ et +
|_ CLC PARTITION 2 TS'M“LATED
AR e HREAT TAPES

Fig. 3—Functional representation of the hardware configuration for the par sys-
tem exerciser.

§16 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

Software was developed to run on the exercise partition of the cLc
to generate simulated radar returns and simulated intersite communi-
cation. Special hardware was developed to inject the simulated threat
data at the receiver of the radar. This allows testing a significant por-
tion of the radar and drives the data processor with realistic data at
its actual interface with the radar. Figure 3 provides a functional
representation of a PAR exercise configuration.

The principal communication between the two partitions is through
the exercise control unit (Ecu). The Ecu intercepts application program
orders to the radar, and intersite messages, and directs them to the
exercise partition. The EcuU routes simulated radar returns generated
by exercise software to the radar-return generator for conversion to
analog waveforms and injection into the receiver of the radar.

The exercise software is a real-time process similar in construction
to the application process. An off-line facility is used to simulate a
threat and generate tapes with a time sequence of the manner in which
the threat appears in the radar viewing volume. These tapes are used
by the exercise process in generating replies to application-process
radar transmissions.

2.5 Software development
2.5.1 Tactical Software Control Site

To develop the large number of programs required for the deployed
system and its support, a Tactical Software Control Site (Tscs) was
established at Madison, New Jersey. The software development
organization, consisting of designers, programmers, test teams, and
many others, was located at a few distinet facilities in northern New
Jersey, all within a few miles of each other, and a single North Carolina
location.

A test bed was required to reproduce accurately the software en-
vironment existing at site such that performance of software in its
operational environment could be verified; software testing could be
accomplished in close proximity to the design organization ; and testing
could precede site availability to reduce development time. To repro-
duce the site software environment, the test bed was required to have
a representative complement of computing hardware for the par and
Mpc; replicate the interfaces between the computer and peripherals;
replicate the peripheral devices to the extent that device performance
and characteristics were not completely isolated from the computer;
and provide the capability for actually netting the par and mpc
processes for purpose of system testing. Thus, a test bed was established
at Tscs and contained separate AR and Mbc configurations correspond-
ing to the paR and mpc sites. The configurations provided peripheral

INTRODUCTION AND OVERVIEW 817

hardware needed by software, but did not include all of the analog
portions of the radar or missile interfaces. Communication paths be-
tween AR and Mpc test-bed configurations were included via the data-
transmission controllers. This permitted Tscs netted testing in advance
of system testing at the sites.

Experience from previous development projects indicated that all
available test-bed time would be required for system testing, operat-
ing-system development, and hardware installation and maintenance.
Support functions (e.g., software preparation and analysis) were there-
fore designed for operation on general-purpose computers such as the
IBM System/370 and HIS 635. These machines were then also re-
quired at Tscs.

2.5.2 Software development cycle

The software development cycle for SAFEGUARD was not substan-
tially different from that of other large systems. In practice, individual
phases of the development cycle overlapped since the general approach
followed was integration of a basic working system with increasingly
more complex capabilities. The separate phases of the development
cyele consisted first of the requirements-generation phase, in which
system requirements were determined, established, negotiated, docu-
mented, and rigorously controlled. The design phase consisted of
process design and program design. In process design, the system re-
quirements were translated into a software architecture which defined
global data structures, tasks, task priorities, and task-timing require-
ments for the data-processing environment. In program design, the
local data base, algorithms, and control structure for the individual
tasks were determined. In the coding and unii-lesting phases, code was
written, compiled, and checked at the unit or task level, using a simu-
lator, drivers, and standard debugging techniques. Next, at the test
bed, separate process-integration teams combined blocks of new, de-
bugged unit code into processes for increasing functional capabilities.
When the tactical software achieved a predefined level of capability,
it was sent to site for sife integration.

Activities at site were similar to those at the Tscs. However, at
site the entire complement of peripheral hardware was available for
integration with the system. Moreover, it was at site that formal
acceptance tests were run. The final phase of system development was
system integration, in which the paRr, MDC, and BMDC sites were “netted”
and the coordinated operation of the entire system was achieved.
During all phases of system development, evaluation played a strong
role. A separate organization was responsible for evaluating system
requirements, implementation algorithms, and system-test results.
Feedback resulted in frequent changes and refinements in many areas.

§18 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

Following is an expanded overview of some important features of
the SAFEGUARD software-development cyecle.

2.5.3 Requirements

The Data Processing System Performance Requirements (ppspRs)
are a set of documents that define the requirements of SAFEGUARD
tactical programs for the pamr, mpc, BmMDC, and system exerciser
processes. Requirements were generated by the system engineering
organization in accordance with overall system objectives, which were
defined by the Department of Defense. Changes to the requirements
were made as a result of detailed software design by the development
organization, Meck prototype system-test-program data, system-
evaluation efforts, and detailed review with the U.S. Army SAFEGUARD
System Command (usasarscom).

The ppsprs met their original objectives of providing a clear defini-
tion of the computing requirements. They have continued to be the
up-to-date system definition of SAFEGUARD performance, and have been
used to specify all system-testing and aceeptance requirements.

2.5.4 Design

Process design was the definition of overall software structure in-
cluding task assignment and global-data-base design. The objective
of process design is to meet system requirements with the minimum-
cost pps configuration. This activity was complemented by program
design which involved developing the algorithms, internal data base,
and control structure necessary to implement the function defined for
a task. This activity led to a detailed software specification, including
specific mathematical equations or decision tables.

Decisions were made in both process and program design to support
early development of a system to which greater capability would be
gradually added. Emphasis was placed on modularity in design to ease
system growth.

It was found to be essential to initiate the design of the data record-
ing and reduction system early in the development eycle. An attempt
was made to define data to be recorded for each computing function,
and to design the data base to include consideration of recording and
the subsequent analysis to be carried out upon the recorded data.

In many areas simulations were used to validate the design. In some
cases, a few selected equations were implemented on a time-sharing
system for a quick exploration of correctness and adequacy. In others,
a subset of the real-time computer program, complete with its inter-
face structures, was simulated.

The size of individual programs and the time required for their
execution were two major parameters which were controlled. Initial

INTRODUCTION AND OVERVIEW $19

sizing and timing estimates were made early in the development based
on past experience with similar programs. Throughout the course of
further development, sizing and timing estimates were tracked on a
monthly basis.

Design reviews were held frequently and proved to be an effective
means for communicating problems and solutions relating to planning
or design issues to other members of the project. These were attended
by a review board consisting of both designers and project managers.

2.5.5 Coding and unit testing

All of the software preparation and most unit testing was performed
using commereial computers. This was primarily because test-bed time
was too valuable to be consumed for compiling and unit testing.

Most SAFEGUARD software was written in cENTRAN, an extensible
intermediate-level language resembling a subset of PL/1. CENTRAN gen-
erated efficient code. It provided many of the advantages of high-level
languages, but could be interspersed with assembly language and
system macros when necessary. It was adopted as the project standard.

To facilitate program preparation and unit testing, a linkage editor,
a crc simulator, and a dise library system were also developed for
execution on the IBM System/370. The linkage editor bound units of
CENTRAN object code for execution on the crc or cLe simulator. The
library system functioned as an editor and disc-file manager, which
helped control cENTRAN source and object code. The linkage editor
and simulator were developed on the SaFEGUARD project, while the
library system was a SAFEGUARD modification of an existing IBM
proprietary program.

2.5.6 Process integration

Following unit debugging, collections of units were tested for in-
creasingly greater functional capabilities on the PAR or mpC test beds
by independent integration teams. Frequently, large drivers were de-
veloped to assist in early functional testing. Subsequently, the system
exerciser was used to stress and drive the application process to various
conditions and loads.

Detailed analyses of integration tests were possible because the
application and exercise processes contain real-time recording functions
which were designed as an integral part of the software. Recorded
data were reduced and analyzed primarily off line on the IBM System/
370 using the SAFEGUARD Date Reduction System, although summary
information was available on line.

A hardware/software cLc performance monitor was developed and
installed at the mscs. It was used primarily to validate that the process

$20 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

performance was consistent with its design. Troubles, such as heavily
loaded time frames and long-running tasks, were analyzed. When
possible, design changes were made to provide a more balanced system.

2.5.7 Site and system integration

When the application and exercise processes achieved predefined
capabilities, they were sent to site for further integration. Capabilities
already established at Tscs were reverified in the expanded hardware
environment. Further testing concurrent with and complementary to
test-bed integration was conducted, with primary emphasis on full
process testing using the system exerciser. A comprehensive series of
acceptance tests was run to demonstrate that system capability was
consistent with requirements. Tests ranged from satellite tracking and
identification to system exercises which drove the system to design
traffic levels.

During system integration, which is the final level of product testing
prior to delivery to the customer, it was not possible to exhaustively
test all tactical threat environments. An “Endpoint Test”” was defined
at the design traffic level for each of the various system-operating
modes. A series of tests was designed for each mode, at first simulating
all communications with other sites, then netting pairs of sites, and
finally netting the system.

The stress level was reduced in early testing by selecting subsets
of the Endpoint Test environments and by running buildup tests at
these lower stress levels before operating the netted system at design
traffic levels. The use of a common environment for a number of tests,
with traffic buildup by addition to this environment, and buildup of
physically internetted sites in stages, led to the “test-chain” approach
to testing. This approach, in which all tests in the chain support the
Endpoint Test, greatly simplified the problems of integrating a dy-
namic system.

Commercial computers were installed at site during the site-and-
system integration period for data-reduction support. This support
was required on location to provide prompt analysis of data recorded
during testing. Tight schedules and lack of available cLc time required
that this facility be provided by a support computer.

2.5.8 Evaluation

System evaluation was primarily an analytical activity which, be-
cause of the complexity of the SAFEGUARD system, relied heavily on
simulation. A SAFEGUARD system simulation was designed to provide
insight into overall system operation with particular emphasis on

INTRODUCTION AND OVERVIEW S21

battle-planning functions. Initially, the simulated system was made to
operate in accordance with performance requirements. Since, quite
properly, performance requirements often permit the designer con-
siderable latitude, modeling of the system in this initial phase often
entailed considerable invention. The goal was to ensure that objectives
would be achieved if the system operated in accordance with perfor-
mance requirements and that inadequacies in system design would
be identified and corrected before resources were wasted attempting
to implement a faulty design. Since there was a practical limit to the
level of detail in which the various weapon system functions could be
modeled, more detailed simulations of the particularly critical func-
tions of surveillance, tracking, target selection, and guidance were
added. By employing these simulations in concert, considerable insight
was gained into detailed system operation.

As the design of the tactical hardware and software stabilized, these
simulations were continually updated to provide a more accurate
representation of tactical operation, and a continuous evaluation of
the evolving system. Early development of detailed but evolving
simulations permitted in-depth analysis of most critical areas of SAFE-
GUARD operation. A number of significant design modifications can be
attributed directly to evaluation activity. A noteworthy example is
the restructuring of both the par and mpc overload-response software
to provide improved performance in a high-traffic environment.

Systematic and detailed analysis of the Meck prototype-system
tests, which were designed to stress critical functional capability, pro-
vided confidence in the validity of analyses based on simulation.
Finally, simulation, in addition to providing a tool for evaluation of
overall system performance, permitted the definition of explicit
thresholds for use in acceptance tests of the entire netted system.

2.6 Project organization and control
2.6.1 Organization

Organizations were established for each of the major software
efforts, PAR, Mpc, BMDC, and System Exerciser. A separate systems-
engineering organization was responsible for requirements and evalua-
tion. Support-software development organizations were also established
for each major support activity such as pps maintenance software,
real-time support software, nonreal-time support software, and com-
puter operations. Each major activity was directed by a project
manager.

The software development organization consisted of engineers and
programmers primarily from Bell Laboratories, IBM, and Western
Electric. While project responsibility rested with Bell Laboratories,

§22 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

IBM was responsible for much of the software development. These
development activities were directed by IBM managers who were in
turn responsible to Bell Laboratories project managers for completion
of the tasks. For the most part, Western Electric engineers and pro-
grammers were integrated directly into Bell Laboratories organizations,
with the notable exception of test-bed-facilities management, which
was turned over to Western Electric early in the development cycle.

2.6.2 Control

Overall scheduling for the project was the responsibility of the
system-engineering organization. Project managers were held respon-
sible for coordinating and setting schedules for software under their
control, consistent with overall schedules.

Schedules were documented at several levels of detail in a manage-
ment-information system. Visibility was provided by frequent design/
schedule reviews, and by a Principal Event Report. The principal
events were selected major milepost achievements in performance,
and were scheduled within the total network of activities related to
software and system development. A written report as to the per-
formance achieved relative to the defined requirements for a prineipal
event was required within 72 hours of the schedule date. All open items
were reported with a schedule for their completion. Upon completion
of an open event, written confirmation to management was required.

Further development control and discipline were achieved by the
use of additional techniques. A Policies, Procedures, and Standards
(pps) Manual was established and maintained. The manual provided
detailed policies and standards to ensure uniformity and eontrol within
the project. PPss were written on change management, documentation,
management reporting, programming standards, ete. Software change
management standards were established early, and they were extended,
modified, and adapted for use on each major activity. Typically, this
included documenting troubles on standard Trouble Report forms and
keeping track of them and their solutions in a Status Accounting
System. Stable software was “frozen,”’ stored, and officially released
by a central organization.

Because of the difficulty of employing subcontractors on a large
complex software development, very careful attention was given to
defining interfaces and a detailed task description, monitoring, and
evaluation system was devised. This system was fundamental to the
success of the development effort.

Comprehensive documentation standards were also established early.
Support software documentation emphasized requirements and user
information; tactical software documentation emphasized require-

INTRODUCTION AND OVERVIEW 8§23

ments, design information, test plans, and well-commented listings. In
general, documentation and software development were synchronized.

The emphasis on planning was fundamental to the overall manage-
ment approach. Although no single planning format or technique was
preseribed, each project manager was required to plan in detail for the
complete design, implementation, and testing of his part of the system.

2.6.3 Resource requirements

Resource estimation and control were generally the responsibility
of project managers. Normal budgetary procedures were used, requir-
ing justification to and approval by upper management and the
customer on a yearly basis. Manpower needs were estimated by pro-
ject managers using experience and algorithms from other large pro-
jects together with a detailed plan of the work to be performed.
Manpower restrictions were resolved by replanning and modifying
schedules.

Support-computer needs were estimated by project managers and
analyzed by the support-computer project manager, who coordinated
the acquisition of support equipment. Application-computer require-

Table | — SAFEGUARD software development—quantities
of instructions and statements

Real-Time Software Instructions

cLc operating system 100,000
MDc applications 300,000
MDC exerciser 50,000
pAR applications 200,000
PAR exerciser 25,000
BMDC applications 60,000

Total 735,000

Support Software Source Statements

cLc software preparation support 210,000
System simulation 50,000
Exercise support 30,000
Data reduction 150,000
Configuration management 70,000
Logic simulation 70,000

Total 580,000

Installation and Maintenance Software Instructions

Mpc radar installation 50,000
PAR radar installation 110,000
PAR radar test 60,000
Maintenance & diagnostic 300,000
Diagnostic operating facility 120,000
pps installation & test 190,000

Total 830,000

S24 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

ments were established and monitored through periodic sizing esti-
mates by the par, Mpc, and BMDC project managers.

The size and duration of the SAFEGUARD development effort was
large indeed. Table I shows the size of the major components of soft-
ware : real-time software, consisting of Mpc and par applications and
exercise programs, BMDC applications programs, and the cLc operating
system, totalled 735,000 instructions; support software, such as com-
pilers and simulators executed on commercial computers, totalled
580,000 statements, some assembly language, and some pPL/1 and
FORTRAN ; installation and maintenance software for the data-process-
ing system and the radars totalled 830,000 instructions. At least several
hundred thousand additional instructions were developed for other
purposes, such as test drivers and specialized simulations. The total
development interval, starting with the generation of SENTINEL re-
quirements and concluding with SAFEGUARD system integration,
spanned 90 months.

lil. CONCLUSION

Perhaps the most important lesson to be learned from SAFEGUARD
is that a large, well-conceived development project, however ambitious,
can be completed successfully. During the development, the number
of sites was changed, drastically reducing the size of the deployment.
This, coupled with test results, as well as changes in objectives, led
to modifications in the overall system design. However, it can reason-
ably be said that the complete development, including the integration
of the first installed sites, was performed on schedule and that the
system met the prescribed performance specifications. Although cost
performance is a little bit harder to define because of the effects of
inflation over the period and because of changes in the deployment,
it seems clear that costs were controlled reasonably.

To reiterate an observation made earlier, implementation of the
SAFEGUARD data-processing system was a significant undertaking, one
of the most complex ever attempted. Its production entailed the de-
velopment of a highly reliable multiprocessor computer system, and
the generation of millions of lines of code. The papers that follow
describe some of the design of the system as well as the lessons that
were learned and the techniques employed.

INTRODUCTION AND OVERVIEW S25

